An Study of Nanoscale Mechanical Twins in GH4169 Alloy by Laser Shot Peening Processing

Article Preview

Abstract:

In order to study the mechanism of the fatigue strengthening using laser shot peening in GH4169 alloy, micro-structural and nanoscale mechanical twins (MT) at different depth below the top surface subjected to laser shot peening processing (LSP) were investigated by means of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. In terms of the experimental observations and analyses, the formation of refined grains and nanoscale MT mechanism at the near surface of GH4169 alloy as a function of LSP treament can be summarized as follows: (i) two direction low density of MTs divide the initial coarse grains into submicron rhombic blocks; (ii) high density of MTs aligned in two directions subdivide the submicron rhombic blocks into nanoscale rhombic MT blocks; (iii) the third direction MT further refine the nanoscale rhombic MT blocks into nanoscale triangular MT blocks; (iv) some of subdivided blocks evolve into refined grains. An ultra-high strain rate induced by ultra-short laser pulse plays a key role in the formation of refined grains and nanoscale MT during plastic deformation of GH4169 alloy subjected to LSP treatment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1027)

Pages:

155-162

Citation:

Online since:

April 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Christian JW, Mahajan S. Deformation twinning [J].Prog. Mater. Sci. ,1995(39): 1.

Google Scholar

[2] Lu JZ, Luo KY, Zhang YK, Cui CY, Sun GF, Zhou JZ, Chen KM. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts [J]. Acta Mater. ,2010,(58):3984.

DOI: 10.1016/j.actamat.2010.03.026

Google Scholar

[3] Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Mater., 2002,( 50):4603.

DOI: 10.1016/s1359-6454(02)00310-5

Google Scholar

[4] Sun HQ, Shi YN, Zhang MX, Lu K. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy [J]. Acta Mater., 2007,(55):975.

DOI: 10.1016/j.actamat.2006.09.018

Google Scholar

[5] Bugayev AA, Gupta MC, Payne R. Laser processing of inconel 600 and surface structure [J]. Opt. Laser. Eng. , 2006,( 44):102-111.

DOI: 10.1016/j.optlaseng.2005.04.014

Google Scholar

[6] Clauer A, Fairand B, Wilcox B. Pulsed laser induced deformation in an Fe-3Wt Pct Si alloy [J]. Metall. Mater. Trans. A, 1977(8):119-125.

DOI: 10.1007/bf02677273

Google Scholar

[7] Clauer, A, Fairand, BP. Interaction of laser-induced stress waves with metals. Presented at Proc. ASM Conference Applications of Lasers in Materials Processing, Washington DC. (1979).

Google Scholar

[8] Zhang X, Misra A, Wang H, Shen TD, Nastasi M, Mitchell TE, Hirth JP, Hoagland RG, Embury JD. Enhanced hardening in Cu/330 stainless steel multi-layers by nanoscale twinning [J]. Acta Mater. , 2004,( 52): 995.

DOI: 10.1016/j.actamat.2003.10.033

Google Scholar

[9] Zhang Y, Tao NR, Lu K. Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles[J]. Acta Mater., 2008,( 56): 2429.

DOI: 10.1016/j.actamat.2008.01.030

Google Scholar

[10] Shen YF, Lu L, Lu QH, Jin ZH, Lu K, Tensile properties of copper with nano-scale twins [J], Scripta Mater., 2005,( 52):989.

DOI: 10.1016/j.scriptamat.2005.01.033

Google Scholar

[11] Li YS, Tao NR, Lu K, Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Mater. , 2008,( 56):230.

DOI: 10.1016/j.actamat.2008.10.021

Google Scholar

[12] Mordyuk BN, Milman YV, Iefimov MO, Prokopenko GI, Silberschmidt VV, Danylenko MI, et al. Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel [J]. Surf Coat Technology, 2008, (202):4875.

DOI: 10.1016/j.surfcoat.2008.04.080

Google Scholar

[13] Li XC, Zhang YK, Zhang QL, Zhou JY, Lu YL. Mechanism of grain refinement induced by laser shock processing in AZ31 magnesium alloy [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31 (3):611-615.

DOI: 10.1007/s11595-016-1418-4

Google Scholar

[14] Chu JP, Rigsbee JM, Banas' G, Elsayed-Ali HE. Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J], Mater.Sci Eng A,1999(160):260.

DOI: 10.1016/s0921-5093(98)00889-2

Google Scholar

[15] Zhang YK, Hu CL, Cai L, Yang JC, Zhang XR. Mechanism of improvement on fatigue life of metal by laser-excited shock waves[J], Appl Phys. A, 2001,(72):113.

DOI: 10.1007/s003390000533

Google Scholar

[16] Cao JD, Zhang JS, Hua YG, Rong Z, Chen RF, Ye YX. Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32 (5):1186-1192.

DOI: 10.1007/s11595-017-1729-0

Google Scholar