[1]
Christian JW, Mahajan S. Deformation twinning [J].Prog. Mater. Sci. ,1995(39): 1.
Google Scholar
[2]
Lu JZ, Luo KY, Zhang YK, Cui CY, Sun GF, Zhou JZ, Chen KM. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts [J]. Acta Mater. ,2010,(58):3984.
DOI: 10.1016/j.actamat.2010.03.026
Google Scholar
[3]
Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Mater., 2002,( 50):4603.
DOI: 10.1016/s1359-6454(02)00310-5
Google Scholar
[4]
Sun HQ, Shi YN, Zhang MX, Lu K. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy [J]. Acta Mater., 2007,(55):975.
DOI: 10.1016/j.actamat.2006.09.018
Google Scholar
[5]
Bugayev AA, Gupta MC, Payne R. Laser processing of inconel 600 and surface structure [J]. Opt. Laser. Eng. , 2006,( 44):102-111.
DOI: 10.1016/j.optlaseng.2005.04.014
Google Scholar
[6]
Clauer A, Fairand B, Wilcox B. Pulsed laser induced deformation in an Fe-3Wt Pct Si alloy [J]. Metall. Mater. Trans. A, 1977(8):119-125.
DOI: 10.1007/bf02677273
Google Scholar
[7]
Clauer, A, Fairand, BP. Interaction of laser-induced stress waves with metals. Presented at Proc. ASM Conference Applications of Lasers in Materials Processing, Washington DC. (1979).
Google Scholar
[8]
Zhang X, Misra A, Wang H, Shen TD, Nastasi M, Mitchell TE, Hirth JP, Hoagland RG, Embury JD. Enhanced hardening in Cu/330 stainless steel multi-layers by nanoscale twinning [J]. Acta Mater. , 2004,( 52): 995.
DOI: 10.1016/j.actamat.2003.10.033
Google Scholar
[9]
Zhang Y, Tao NR, Lu K. Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles[J]. Acta Mater., 2008,( 56): 2429.
DOI: 10.1016/j.actamat.2008.01.030
Google Scholar
[10]
Shen YF, Lu L, Lu QH, Jin ZH, Lu K, Tensile properties of copper with nano-scale twins [J], Scripta Mater., 2005,( 52):989.
DOI: 10.1016/j.scriptamat.2005.01.033
Google Scholar
[11]
Li YS, Tao NR, Lu K, Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Mater. , 2008,( 56):230.
DOI: 10.1016/j.actamat.2008.10.021
Google Scholar
[12]
Mordyuk BN, Milman YV, Iefimov MO, Prokopenko GI, Silberschmidt VV, Danylenko MI, et al. Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel [J]. Surf Coat Technology, 2008, (202):4875.
DOI: 10.1016/j.surfcoat.2008.04.080
Google Scholar
[13]
Li XC, Zhang YK, Zhang QL, Zhou JY, Lu YL. Mechanism of grain refinement induced by laser shock processing in AZ31 magnesium alloy [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31 (3):611-615.
DOI: 10.1007/s11595-016-1418-4
Google Scholar
[14]
Chu JP, Rigsbee JM, Banas' G, Elsayed-Ali HE. Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J], Mater.Sci Eng A,1999(160):260.
DOI: 10.1016/s0921-5093(98)00889-2
Google Scholar
[15]
Zhang YK, Hu CL, Cai L, Yang JC, Zhang XR. Mechanism of improvement on fatigue life of metal by laser-excited shock waves[J], Appl Phys. A, 2001,(72):113.
DOI: 10.1007/s003390000533
Google Scholar
[16]
Cao JD, Zhang JS, Hua YG, Rong Z, Chen RF, Ye YX. Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32 (5):1186-1192.
DOI: 10.1007/s11595-017-1729-0
Google Scholar