[1]
M. Azadi, H. Bahmanabadi, F. Gruen, G. Winter, Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment, Materials Science & Engineering A 788 (2020) 139497.
DOI: 10.1016/j.msea.2020.139497
Google Scholar
[2]
Khemraj, A.K. Jha, S.N. Ojha, Deformation behavior of aluminum-silicon (Al-Si) alloy during forging under various processing conditions, Materials Today: Proceedings 5 (2018) 26955-26960.
DOI: 10.1016/j.matpr.2018.08.184
Google Scholar
[3]
Y. Sun, D. Zhao, J. Song, C. Wang, Z. Zhang, L. Huang, J. Liu, Z. Liu, Rapid fabrication of superhydrophobic high-silicon aluminum alloy surfaces with corrosion resistance, Results in Physics 12 (2019) 1082-1088.
DOI: 10.1016/j.rinp.2018.12.090
Google Scholar
[4]
A.S. Darmawan, W.A. Siswanto, P. I. Purboputro, A.D. Anggono, Masyrukan, A. Hamid, Effect of Increasing Salinity to Corrosion Resistance of 5052 Aluminum Alloy in Artificial Seawater, Materials Science Forum 961 (2019) 107-111.
DOI: 10.4028/www.scientific.net/msf.961.107
Google Scholar
[5]
Y. Otani, S. Sasaki, Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability, Materials Science & Engineering A 777 (2020) 139079.
DOI: 10.1016/j.msea.2020.139079
Google Scholar
[6]
M. Beranger, J.M. Fiard, K. Ammar, G. Cailletaud, A new fatigue model including thermal ageing for low copper aluminum-silicon alloys, Procedia Engineering 213 (2018) 720-729.
DOI: 10.1016/j.proeng.2018.02.068
Google Scholar
[7]
V.K. Sharma, R.C. Singh, R. Chaudhary, Effect of fly ash particles with aluminium melt on the wear of aluminium metal matrix composites, Engineering Science and Technology, an International Journal 20 (2017) 1318-1323.
DOI: 10.1016/j.jestch.2017.08.004
Google Scholar
[8]
A.S. Darmawan, P.I. Purboputro, B.W. Febriantoko, The aluminum powder size' effect on rice plant fiber reinforced composite to hardness, wear and coefficient of friction of brake lining, IOP Conf. Series: Materials Science and Engineering 722 (2020) 012002.
DOI: 10.1088/1757-899x/722/1/012002
Google Scholar
[9]
A.S. Darmawan, T.W.B. Riyadi, A. Hamid, B.W. Febriantoko, B.S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings 1977 (2018) 020006.
DOI: 10.1063/1.5042862
Google Scholar
[10]
H. Ammar, A. Samuel, F. Samuel, Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys, International Journal of Fatigue 30(6) (2008) 1024-1035.
DOI: 10.1016/j.ijfatigue.2007.08.012
Google Scholar
[11]
J. Gu, J. Ding, S.W. Williams, H. Gu, P. Ma, Y. Zhai, The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys, Journal of Materials Processing Technology 230 (2016) 26-34.
DOI: 10.1016/j.jmatprotec.2015.11.006
Google Scholar
[12]
C. Hu, T. Ding, H. Ou, Z. Zhao, Effect of tooling surface on friction conditions in cold forging of an aluminum alloy, Tribology International 131 (2019) 353-362.
DOI: 10.1016/j.triboint.2018.11.002
Google Scholar
[13]
W. Ding, X. Zhao, T. Chen, H. Zhang, X. Liu, Y. Cheng, D. Lei, Effect of rare earth Y and Al-Ti-B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy, Journal of Alloys and Compounds 830 (2020) 154685.
DOI: 10.1016/j.jallcom.2020.154685
Google Scholar
[14]
A.R. Nath OP, S. Arul, Effect of Nickel Reinforcement on Micro Hardness and Wear Resistance of Aluminium Alloy Al7075, Materials Today: Proceedings 24 (2020) 1042-1051.
DOI: 10.1016/j.matpr.2020.04.418
Google Scholar
[15]
Z. Liu, H. Zhang, Z. Hou, H. Feng, P. Dong, P.K. Liaw, Microstructural origins of mechanical and electrochemical heterogeneities of friction stir welded heat-treatable aluminum alloy, Materials Today Communications 24 (2020) 101229.
DOI: 10.1016/j.mtcomm.2020.101229
Google Scholar
[16]
D. Guo, C.T. Kwok, L.M. Tam, D. Zhang, X. Li, Hardness, microstructure and texture of friction surfaced 17-4PH precipitation hardening stainless steel coatings with and without subsequent aging, Surface & Coatings Technology 402 (2020) 126302.
DOI: 10.1016/j.surfcoat.2020.126302
Google Scholar
[17]
W. Lee, J. Lee, W. Kyoung, H. Lee, H. Lee, D. Kim, Effect of inhomogeneous composition on the thermal conductivity of an Al alloy during the precipitation-hardening process, Journal of Materials Research and Technology 9(5) (2020) 10139-10147.
DOI: 10.1016/j.jmrt.2020.07.040
Google Scholar
[18]
W. Tu, J. Tang, L. Ye, L. Cao, Y. Zeng, Q. Zhu, Y. Zhang, S. Liu, L. Ma, J. Lu, B. Yang, Effect of the natural aging time on the age-hardening response and precipitation behavior of the Al-0.4Mg-1.0Si-(Sn) alloy, Materials and Design 198 (2021) 109307.
DOI: 10.1016/j.matdes.2020.109307
Google Scholar
[19]
J. Krell, A. Röttger, U. Ziesing, W. Theisen, Influence of precipitation hardening on the high-temperature sliding wear resistance of an aluminium alloyed iron-nickel base alloy, Tribology International 148 (2020) 106342.
DOI: 10.1016/j.triboint.2020.106342
Google Scholar
[20]
M.G. Mueller, G. Žagar, A. Mortensen, In-situ strength of individual silicon particles within an aluminium casting alloy, Acta Materialia 143 (2018) 67-76.
DOI: 10.1016/j.actamat.2017.09.058
Google Scholar