Particle Size and Microstructure Characterization of Uncontrolled Burning Rice Husk Ash (RHA) as Pozzolanic Material

Article Preview

Abstract:

RHA has been the subject of investigation for its pozzolanic activity that heavily linked to the controlled temperature burning process in order to achieve amorphous form of silica. This paper present the characterization of RHA that was taken directly from the boiler of rice mill with uncontrolled burning temperature. Particle size analysis revealed grinding process of RHA could significantly curb the diameter size and increased specific surface area. Microstructure analysis suggest that RHA is very porous and EDX test showed the chemical content of RHA. The prospect of using uncontrolled burnt RHA as part of construction material is feasible.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1029)

Pages:

97-103

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Agriculture, U.S.D.o. Rice Outlook Report October 2019. 2019 [cited 2020 December 8, 2020].

Google Scholar

[2] Statistik, B.P. Luas panen dan produksi padi pada tahun 2020 mengalami kenaikan dibandingkan tahun 2019 masing-masing sebesar 1,02 dan 1,02 persen. 2020 [cited 2020 December 8, 2020].

DOI: 10.31219/osf.io/yftg7

Google Scholar

[3] Saunders, R.M., Rice bran: Composition and potential food uses. Food Reviews International, 1985. 1(3): pp.465-495.

DOI: 10.1080/87559128509540780

Google Scholar

[4] Cook, D.J., R.P. Pama, and B.K. Paul, Rice Husk Ash-Lime-Cement Mixes for Use in Masonry Units. Building and Environment, 1977. 12: pp.281-288.

DOI: 10.1016/0360-1323(77)90031-2

Google Scholar

[5] James, J. and M.S. Rao, Reaction product of lime and silica from rice husk ash. Cement and Concrete Research, 1986. 16: pp.67-73.

DOI: 10.1016/0008-8846(86)90069-4

Google Scholar

[6] Yalçin, N. and V. Sevinç, Studies on silica obtained from rice husk. Ceramics International, 2001. 27(2): pp.219-224.

DOI: 10.1016/s0272-8842(00)00068-7

Google Scholar

[7] Hani, A.S., et al., The influence of micronised biomass silica in compressive strength and water permeability of concrete. MASAUM Journal of Basic and Applied Sciences, 2009. 1(3): pp.493-496.

Google Scholar

[8] Hassan, M.A. and A.H.M. Mustapha, Effect of rice husk ash on cement stabilized laterite. Leonardo Electronic Journal of Practises and Technologies, 2007(11): pp.47-58.

Google Scholar

[9] Jha, J.N. and K.S. Gill, Effect of rice husk ash on lime stabilization. Journal of the Institution of Engineers (India), 2006. 87: pp.33-39.

Google Scholar

[10] Laksmono, J.A. Pemanfaatan abu sekam padi sebagai bahan baku silika. in Seminar Tantangan Penelitian Kimia. 2002. Jakarta: Lembaga Ilmu Pengetahuan Indonesia (LIPI).

DOI: 10.31227/osf.io/9eam2

Google Scholar

[11] Al-Khalaf, M.N. and H.A. Yousif, Use of rice husk ash in concrete. International Journal of Cement Composites and Lightweight Concrete, 1984. 6(4): pp.241-248.

DOI: 10.1016/0262-5075(84)90019-8

Google Scholar

[12] Sensale, G.R.d., Strength development of concrete with rice-husk ash. Cement and Concrete Composites, 2006. 28(2): pp.158-160.

DOI: 10.1016/j.cemconcomp.2005.09.005

Google Scholar

[13] Jauberthie, R., et al., Origin of the pozzolanic effect of rice husks. Construction and Building Materials, 2000. 14(8): pp.419-423.

DOI: 10.1016/s0950-0618(00)00045-3

Google Scholar

[14] Ismail, M.S. and A.M. Waliuddin, Effect of rice husk ash on high strength concrete. Construction and Building Materials, 1996. 10(7): pp.521-526.

DOI: 10.1016/0950-0618(96)00010-4

Google Scholar

[15] Mehta, P.K., Siliceous ashes and hydraulic cements prepared therefrom. July 1973: Belgium.

Google Scholar

[16] Odler, I., Special Inorganic Cement. 2000, London: E & FN Spon, Taylor and Francis Group.

Google Scholar

[17] Ramezanianpour, A.A., M.M. Khani, and G. Ahmadibeni, The effect of rice husk ash on mechanical properties and durability of sustainable concrete. International Journal of Civil Engineering, 2009. 7(2): pp.83-91.

Google Scholar

[18] Chareerat, T., et al. Composition and Microstructure of Fly Ash Geopolymer Containing Rice Husk Ash. in Technology and Innovation for Sustainable Development Conference. 2008. Thailand.

Google Scholar

[19] Nair, D.G., et al., A structural investigation to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 2008. 38: pp.861-869.

DOI: 10.1016/j.cemconres.2007.10.004

Google Scholar

[20] Walker, P. and T. Stace, Properties of some cement stabilised compressed earth blocks and mortars. Materials and Structures/Mat4riaux et Constructions, 1996. 30(November 1997): pp.545-551.

DOI: 10.1007/bf02486398

Google Scholar

[21] Guettala, A., A. Abibsi, and H. Houari, Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Construction and Building Materials, 2006. 20(3): pp.119-127.

DOI: 10.1016/j.conbuildmat.2005.02.001

Google Scholar

[22] Walker, P., Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cement and Concrete Composites, 1995. 17(4): pp.301-310.

DOI: 10.1016/0958-9465(95)00019-9

Google Scholar

[23] Walker, P., Strength and Erosion Characteristics of Earth Blocks and Earth Block Masonry. Journal of Materials in Civil Engineering, 2004. 16(5): pp.497-506.

DOI: 10.1061/(asce)0899-1561(2004)16:5(497)

Google Scholar

[24] Jayasinghe, C. and R.S. Mallawaarachchi, Flexural strength of compressed stabilized earth masonry materials. Materials & Design, 2009. 30(9): pp.3859-3868.

DOI: 10.1016/j.matdes.2009.01.029

Google Scholar

[25] Walker, P., Bond Characteristic of Earth Block Masonry Journal of Materials in Civil Engineering, 1999. 11(3): pp.249-256.

Google Scholar

[26] Oti, J.E., J.M. Kinuthia, and J. Bai, Engineering properties of unfired clay masonry bricks. Engineering Geology, 2009. 107(3-4): pp.130-139.

DOI: 10.1016/j.enggeo.2009.05.002

Google Scholar

[27] Oti, J.E., J.M. Kinuthia, and J. Bai, Compressive strength and microstructural analysis of unfired clay masonry bricks. Engineering Geology, 2009. 109(3-4): pp.230-240.

DOI: 10.1016/j.enggeo.2009.08.010

Google Scholar

[28] Oti, J.E., J.M. Kinuthia, and J. Bai, Design thermal values for unfired clay bricks. Materials & Design, 2009. 31(1): pp.104-112.

DOI: 10.1016/j.matdes.2009.07.011

Google Scholar

[29] Bahar, R., M. Benazzoug, and S. Kenai, Performance of compacted cement-stabilised soil. Cement and Concrete Composites, 2004. 26(7): pp.811-820.

DOI: 10.1016/j.cemconcomp.2004.01.003

Google Scholar

[30] Cordeiro, G.C., et al., Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash. Cement and Concrete Composites, 2011. 33(5): pp.529-534.

DOI: 10.1016/j.cemconcomp.2011.02.005

Google Scholar

[31] Park, B.-D., et al., Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass and Bioenergy, 2003. 25(3): pp.319-327.

DOI: 10.1016/s0961-9534(03)00014-x

Google Scholar

[32] Hadipramana, J., et al. Pozzolanic Characterization Of Waste Rice Husk Ash (RHA) From Muar, Malaysia. in International Engineering Research and Innovation Symposium (IRIS). 2016. Melaka, Malaysia.

DOI: 10.1088/1757-899x/160/1/012066

Google Scholar