A Parametric Study of Coupled Photo-Electro-Thermal Responses of Thin Film a-Si:H Solar Cell with Embedded Nanoparticles

Article Preview

Abstract:

A parametric investigation has been performed on a thin-film hydrogenated amorphous silicon (a-Si:H) solar cell that is enhanced with various light trapping schemes through a modelling approach. The proposed model contains a novel coupling approach and various feedback routines for a more holistic modelling treatment. The proposed optical model adopts a semi-coherent method, the electrical model extends the classical drift-diffusion model to incorporate the effects of thermal gradients, and the thermal model adopts energy conservation equations from the hydrodynamic model. Based on the simulation results, it is observed that the rise in cell temperature adversely affects the electrical performance but promotes more optical absorptions due to the unique optical properties of amorphous silicon. To obtain an optimum enhancement from the inclusion of nanoparticles, their dimensions and separation distances are essential factors. The thickness of the intrinsic active absorbing layer affects the optical performance directly which then leads to various variations in electrical and thermal responses.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1030)

Pages:

186-193

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, (2011).

Google Scholar

[2] M. Zeman, R. A. C. M. M. v. Swaaij, J. W. Metselaar, R. E. I. Schropp, Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness, Journal of Applied Physics 88 (2000) 6436-6443.

DOI: 10.1063/1.1324690

Google Scholar

[3] H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles, Nano Letters 12 (2012) 4070-4076.

DOI: 10.1021/nl301521z

Google Scholar

[4] T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, H. M. Upadhyaya, Solar photovoltaic electricity: Current status and future prospects, Solar Energy 85 (2011) 1580-1608.

DOI: 10.1016/j.solener.2010.12.002

Google Scholar

[5] D. Vasileska, S. M. Goodnick, G. Klimeck, Computational Electronics: semiclassical and quantum device modeling and simulation, CRC Press, (2017).

DOI: 10.1201/b13776

Google Scholar

[6] H. Zhu, A. K. Kalkan, J. Hou, S. J. Fonash, Applications of AMPS-1D for solar cell simulation, AIP Conference Proceedings 462 (1999) 309-314.

DOI: 10.1063/1.57978

Google Scholar

[7] M. Asaduzzaman, M. B. Hosen, M. K. Ali, A. N. Bahar, Non-Toxic Buffer Layers in Flexible Cu(In,Ga)Se2 Photovoltaic Cell Applications with Optimized Absorber Thickness, International Journal of Photoenergy 2017 (2017) 8.

DOI: 10.1155/2017/4561208

Google Scholar

[8] H. Kida, M. Itoh, S. Fukazawa, T. Ohta, and K. Yamamoto, A Device Modeling of Amorphous Silicon Based Tandem Solar Cells, Japanese Journal of Applied Physics 28 (1989) L1499-L1501.

DOI: 10.1143/jjap.28.l1499

Google Scholar

[9] M. Zeman, J. A. Willemen, L. L. A. Vosteen, G. Tao, J. W. Metselaar, Computer modelling of current matching in a-Si : H/a-Si : H tandem solar cells on textured TCO substrates, Solar Energy Materials and Solar Cells, 46 (1997) 81-99.

DOI: 10.1016/s0927-0248(96)00094-3

Google Scholar

[10] X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, M. Gu, Broadband Enhancement in Thin-Film Amorphous Silicon Solar Cells Enabled by Nucleated Silver Nanoparticles, Nano Letters, 12 (2012) 2187-2192.

DOI: 10.1021/nl203463z

Google Scholar

[11] J. Springer, A. Poruba, M. Vanecek, Improved three-dimensional optical model for thin-film silicon solar cells, Journal of Applied Physics, 96 (2004) 5329-5337.

DOI: 10.1063/1.1784555

Google Scholar

[12] J. Krc, Optical modeling and simulation of thin-film photovoltaic devices, CRC Press, (2016).

Google Scholar

[13] C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, John Wiley & Sons, (2008).

Google Scholar

[14] D. M. Caughey, R. E. Thomas, Carrier mobilities in silicon empirically related to doping and field, Proceedings of the IEEE, 55 (1967) 2192-2193.

DOI: 10.1109/proc.1967.6123

Google Scholar

[15] N. V. Voshchinnikov, G. Videen, T. Henning, Effective medium theories for irregular fluffy structures: aggregation of small particles, Applied Optics vol. 46 (2007) 4065-4072.

DOI: 10.1364/ao.46.004065

Google Scholar

[16] D. Vasileska, Computational Electronics, https://nanohub.org/resources/1500#series.

Google Scholar

[17] R. Quay, C. Moglestue, V. Palankovski, S. Selberherr, A temperature dependent model for the saturation velocity in semiconductor materials, Materials Science in Semiconductor Processing 3 (2000) 149-155.

DOI: 10.1016/s1369-8001(00)00015-9

Google Scholar

[18] N. D. Arora, J. R. Hauser, D. J. Roulston, Electron and hole mobilities in silicon as a function of concentration and temperature, IEEE Transactions on Electron Devices 29 (1982) 292-295.

DOI: 10.1109/t-ed.1982.20698

Google Scholar

[19] B. T. Wong, P. M. Mengüç, Thermal Transport for Applications in Micro/Nanomachining, Springer Science & Business Media, (2008).

Google Scholar