[1]
T. G. DAI, J. Q. PAN, D. X. ZHANG. The 70-year progress of non-ferrous metal exploration in China[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1817-1827.
Google Scholar
[2]
C. LEVENS, M. PETERS. Titanium and Titanium Alloys[M], Wiley Online Library, (2003).
Google Scholar
[3]
H. C. XIONG, H. G. HUANG, Z. M. LI, et al. Effect of annealing temperature on microstructure and mechanical properties of large diameter TC4 titanium alloy seamless tube[J]. Heat Treatment of Metals, 2019, 44(12): 107-111.
Google Scholar
[4]
X. L. XU, H. J. LIU, H. L. ZHANG, et al. Current status and future prospects of titanium alloy drill pipes in drilling engineering[J]. Journal of Power and Energy Engineering, 2019, 1(6): 27-31.
Google Scholar
[5]
X. GAO, W. SHI, Q. LU, et al. Corrosion characteristics of TC17 titanium alloy in HCl solution[J]. Gas Turbine Experiment and Research, 2018, 31(6): 30-35.
Google Scholar
[6]
R. LIU, Y. CUI, L. LIU, et al. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution[J]. Corrosion Science, 2020, 165(1): 108402.
DOI: 10.1016/j.corsci.2019.108402
Google Scholar
[7]
L. J. LI, S. W. LIU. Corrosion resistance of Ti-6Al-4V in environment containing chlorine ion[J]. Sichuan Chemical Industry, 2014, 17(5): 29-31.
Google Scholar
[8]
G. F. Chi, D. Q. Yi, H. Q. Liu. Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12 wt.% HCl solution at 35℃[J]. Journal of Materials Research and Technology, 2020, 9(2): 1162-1174.
DOI: 10.1016/j.jmrt.2019.11.044
Google Scholar
[9]
V. B. SINGH, S. M. A. HOSSEINI. The electrochemical and corrosion behavior of titanium and its alloy (VT-9) in phosphoric acid[J]. Corrosion Science, 1993, 34(10): 1723-1732.
DOI: 10.1016/0010-938x(93)90044-h
Google Scholar
[10]
D. J. BLACKWOOD, R. GREEF, L. M. PETER. An ellipsometric study of the growth and open-circuit dissolution of the anodic oxide film on titanium[J]. Elctrochimica Acta, 1989, 34(6): 875-380.
DOI: 10.1016/0013-4686(89)87123-3
Google Scholar
[11]
I. YOKOYAMA K, T. OGAYA, K. ASAOKA, et al. Susceptibility to delayed fracture of alpha–beta titanium alloy in fluoride solutions[J]. Corrosion Science, 2005, 47: 1778-1793.
DOI: 10.1016/j.corsci.2004.08.007
Google Scholar
[12]
X. H. ZHAO, W. HUANG, H. L. ZHANG. Corrosion behavior of tubing string in CO2 flooding environment of simulated oil field[J]. Surface Technology, 2019, 48(5): 1-8.
Google Scholar
[13]
X. H. LV, W. P. GAO, J. F. XIE, et al. Study on corrosion resistance of titanium alloy tube in harsh downhole Environment[J]. Hot Working Technology, 2017, 46(6): 58-62.
Google Scholar
[14]
J. F. XIE, M. F. ZHAO, H. L. GEN, et al. Comparative analysis of corrosion resistance of high corrosion resistant alloy string materials under harsh corrosion environment[J]. Hot Working Technology, 2019, 48(6): 101-104+108.
Google Scholar
[15]
Y. R. FU. Application status and prospect of titanium alloy pipe in exploration and development of high sour natural gas[J]. China Petroleum Machinery, 2018, 46(3): 116-124.
Google Scholar
[16]
X. H. LV, W. LIANG, L. JI, et al. Comparative analysis of corrosion resistance of several corrosion-resistant alloy pipe string materials under high temperature[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2018, 33(05): 101-106+126.
Google Scholar
[17]
W. LIANG, J. F. XIE, Y. Q WANG, et al. Study on corrosion electrochemical properties of titanium alloy tubes in severe environment[J]. Hot Working Technology, 2018, 47(6): 98-102.
Google Scholar
[18]
J. G. SUN, D. J. SONG. Research and application of titanium alloys for petroleum and natural gas at home and abroad[J]. Development and Application of Materials, 2019, 34(06): 96-102.
Google Scholar
[19]
J. KITTEL, F. ROPITAL, et al. Corrosion mechanism in aqueous solutions containing dissolved H2S part 1: characterisation of H2S reduction on a 316L rotating disc electrode[J]. Corrosion Science, 2013, 66(1): 324-329.
DOI: 10.1016/j.corsci.2012.09.036
Google Scholar
[20]
Z. J. AI, Y. W. FAN, Q. K. ZHAO. Review on H2S corrosion of oil gas tubing and its protection[J]. Surface Technology, 2015, 44(09): 108-115.
Google Scholar
[21]
M. J. CHEN, X. LUO. Anticorrosion measures of drilling equipments in the natural gas well containing thickness hydrogen sulfide and carbon dioxide[J]. Surface Technology, 2006(1): 80-82+90.
Google Scholar
[22]
C. Y. YU. Development and application on corrosion resistant titanium alloys[J]. Total Corrosion and Control, 2002(06): 6-11.
Google Scholar
[23]
C. Q. DANG, J. L. LI, Y. WANG, et al. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating[J]. Applied Surface Science, 2016, 386(15): 224-233.
DOI: 10.1016/j.apsusc.2016.06.024
Google Scholar
[24]
J. H. LIN, Z. H. DAN, J. F. LU, et al. Research status and prospect on marine corrosion of titanium alloys in deep ocean environments[J]. Rare Metal Materials and Engineering, 2020, 49(03): 1090-1099.
Google Scholar
[25]
X. J. YANG, Z. Y. LIU, D. W. ZHANG, et al. Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment[J]. China Surface Engineering, 2019, 32(4): 17-26.
Google Scholar
[26]
H. SUN, L. LIU, Y. LI, et al. The performance of Al–Zn–In–Mg–Ti sacrificial anode in simulated deep water environment[J]. Corrosion Science, 2013, 77: 77-87.
DOI: 10.1016/j.corsci.2013.07.029
Google Scholar
[27]
S. HU, L. LIU, Y. CUI, et al. Influence of hydrostatic pressure on the corrosion behavior of 90/10 copper-nickel alloy tube under alternating dry and wet condition[J]. Corrosion Science, 2019, 146: 202-212.
DOI: 10.1016/j.corsci.2018.10.036
Google Scholar
[28]
Y. YANG, T. ZHANG, Y. SHAO, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni–Cr–Mo–V high strength steel[J]. Corrosion Science, 2013, 73: 250-261.
DOI: 10.1016/j.corsci.2013.04.013
Google Scholar
[29]
Z. LI, J. WANG, Y. Z. DONG, et al. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy[J]. Journal of Materials Science & Technology, 2021, 71: 177-185.
DOI: 10.1016/j.jmst.2020.07.022
Google Scholar
[30]
J. PANG, D. J. BLACKWOOD. Corrosion of titanium alloys in high temperature near anaerobic seawater[J]. Corrosion Science, 2016, 105: 17-24.
DOI: 10.1016/j.corsci.2015.12.011
Google Scholar
[31]
Z. S. NONG, Y. N. LEI, J. C. ZHU. Effect of α phase on evolution of oxygen-rich layer on titanium alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(03): 534-545.
DOI: 10.1016/s1003-6326(19)64962-9
Google Scholar
[32]
C. Y. YU. Development of corrosion resistant titanium alloys[J]. Titanium Industry Progress, 2003(01): 12-19.
Google Scholar
[33]
L. WANG. Insight into behavior and mechanism of passivation of titanium and titanium alloys[D]. Beijing: University of Science and Technology Beijing, (2020).
Google Scholar
[34]
W. P. GAO. Study on the corrosion resistance mechanism of titanium alloy tubes in severe environment with H2S/CO2[D]. Xi'an: Xi'an Shiyou University, (2017).
Google Scholar
[35]
K. ASAMI, S. C. CHEN, H. HABAZAKI, et al. The surface characterization of titanium and titanium-nickel alloys in sulfuric acid[J]. Corrosion Science, 1993, 35(14): 43-49.
DOI: 10.1016/0010-938x(93)90131-y
Google Scholar
[36]
F. MANSFELD, G. LIU, H. XIAO, et al. The corrosion behavior of copper alloys, stainless steels and titanium in seawater[J]. Corrosion Science, 1994, 36(12): 2063-2095.
DOI: 10.1016/0010-938x(94)90008-6
Google Scholar