Studies of Magnetically Active Silicone Elastomers on a Vibrostend

Article Preview

Abstract:

Experimental studies magnetorheological elastomer specimens dynamic properties under the magnetic fields action on the vibrostend are carried out. Amplitude-frequency characteristics have been obtained. The magnetic field effect on the silicone magnetoreactive elastomers deformation properties and damping coefficients experimentally is established.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

141-147

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.A. Glazunov, Modern problems of engineering, Institute for Computer Research, Moscow – Izhevsk, (2015).

Google Scholar

[2] M. R. Jolly, J. D. Carlson, B. C. Munoz, T. A. Bullions, The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix, J. Intelligent Mat. Syst. Struct. No 67 (1999) 613-622.

DOI: 10.1177/1045389x9600700601

Google Scholar

[3] W.H. Li, G.Z. Yao, G. Chen, S. H. Yeo, F.F. Yap, Testing and steady state modelling of a linear MR damper under sinusoidal loading, Smart Mater. Struct. 9 (2000) 95-102.

DOI: 10.1088/0964-1726/9/1/310

Google Scholar

[4] J. M. Ginder, S. M. Clark, W. F. Schlotter, M. E. Nichols, Magnetostrictive Phenomena in Magnetorheological Elastomers, Int. J. Mod. Phys. No 16 (2002) 2412-2418.

DOI: 10.1142/s021797920201244x

Google Scholar

[5] I. Bica, 2012 The influence of hydrostatic pressure and transverse magnetic field on the electric conductivity of the magnetorheological elastomers, J. Ind. Eng. Chem. 18 (2012) 483–486.

DOI: 10.1016/j.jiec.2011.11.067

Google Scholar

[6] W. H. Li, X. Z. Zhang, H. Du Magnetorheological elastomers and their applications, Adv. Struct. Mater. 11 (2013) 357-374.

Google Scholar

[7] R. Sinko, M. Karnes, J. H. Koo, K. Kim, K. S. Kim, Design and test of an adaptive vibration absorber based on magnetorheological elastomers and a hybrid electromagnet, J. Intell. Mater. Syst. Struct. 24 (2013) 803-812.

DOI: 10.1177/1045389x12463461

Google Scholar

[8] J. Ubaidillah, J, A. Purwanto, S. A. Mazlan, Recent progress on magnetorheological solids: materials, fabrication, testing, and application, Adv. Eng. Mater. 17 (2015) 563-597.

DOI: 10.1002/adem.201400258

Google Scholar

[9] A. M. Menzel, Mesoscopic characterization of magnetoelastic hybrid materials: magnetic gels and elastomers, their particle-scale description, and scale-bridging links, Arch. Appl. Mechanics 89 (2019) 17–45.

DOI: 10.1007/s00419-018-1413-7

Google Scholar

[10] A.Ya. Minaev, Yu. V. Korovkin, The study of the magnetically active elastomers dynamic properties and the development of damping supports Assembly in mechanical engineering, instrument making No. 1 (2018) 10-12.

Google Scholar

[11] H. H. Valiev, A. Ya. Minaev, G. V. Stepanov, Yu. N. Karnet, O. B. Yumashev, Scanning probe microscopy of magnetorheological elastomers, Surface. X-ray, synchr. and neutron res. No 9 (2019) 40-43.

DOI: 10.1134/s1027451019050161

Google Scholar

[12] Becker T L, Zimmermann K, Borin D Y, Stepanov G V, Storozhenko P A. Dynamic response of a sensor element of magnetic hybrid elastomer with controlled properties, J. magn. magnetic materials 449 (2018) 77-82.

DOI: 10.1016/j.jmmm.2017.09.081

Google Scholar

[13] Yu. A. Alekhina, L. A. Makarova, T. S. Rusakova, A. S. Semisalova, N. S. Perov, Properties of magnetorheological elastomers in crossed ac and dc magnetic fields, J. Siberian Federal University. Series: Mathematics and Physics 10 (2017) 45-50.

DOI: 10.17516/1997-1397-2017-10-1-45-50

Google Scholar

[14] P. V. Melenev, V. N. Kovrov, Yu. L. Reicher, V. V. Rusakov, G. V. Stepanov, L. S. Polygalova, E. Yu. Kramarenko, Structural-mechanical model of the elastic-plastic behavior of soft magnetic elastomers, Computational mechanics of continuous media 7 (2014) 423-433.

DOI: 10.7242/1999-6691/2014.7.4.40

Google Scholar

[15] V.V. Sorokin, G.V. Stepanov, M. Shamonin, G.J. Monkman, A.R. Khokhlov, E.Yu. Kramarenko, Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: effects of filler composition, strain amplitude and magnetic field, Polymer 76 (2015) 191-202.

DOI: 10.1016/j.polymer.2015.08.040

Google Scholar

[16] T. A. Nadzharyan, S. A. Kostrov, G. V. Stepanov, E. Yu. Kramarenko, Fractional rheological models of dynamic mechanical behavior of magnetoactive elastomers in magnetic fields, Polymer 142 (2018) 316-329.

DOI: 10.1016/j.polymer.2018.03.039

Google Scholar

[17] V. P. Mikhailov, A. M. Bazinenkov, P. A. Dolinin, G. V. Stepanov, Dynamic modeling of anactive damper, Vestnik Mashinostroenia 3 (2018) 34-36.

Google Scholar

[18] A. Yu. Minaev, Yu. V. Korovkin and G. V. Stepanov, Patent application. No. 2018,137,429 RU (2019).

Google Scholar

[19] Я. G. Panovko, Fundamentals of Applied Theory of Elastic Vibrations. Mashinostroenie, Moscow, (1967).

Google Scholar