Investigation of the Heat-Affected Zone Properties During Cladding of Power Equipment with Austenitic Materials Using Control Mechanical Impacts on the Strip Electrode

Article Preview

Abstract:

During cladding an austenitic layer on low-carbon and medium-alloyed steels, the properties of the heat-affected zone, along with the resistance of the surface layer to resist corrosion, largely determine the performance and durability of the surfaced product. The work is devoted to the study of the dependence of the properties of the heat-affected zone during cladding of power equipment with austenitic materials on the parameters of the control mechanical impacts on the strip electrode and determination of their optimal range, which ensures high values of the mechanical properties of the deposited layer.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

100-107

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.A. Karkhin, Thermal Processes in Welding, Springer, Singapore, (2019).

Google Scholar

[2] V. Ivanov, N.A. Makarenko, E. Lavrova, M.V. Ahieieva, Electric arc deposition of an anticorrosive layer with two strip electrodes, Solid State Phenomena. 303 (2020) 39-46.

DOI: 10.4028/www.scientific.net/ssp.303.39

Google Scholar

[3] I. Chub, O. Pirogov, O. Mirgorod, S. Rudakov, Investigation of the Gas Sensitive Properties of Tin Dioxide Films Obtained by Magnetron Sputtering, In Materials Science Forum. Trans Tech Publications Ltd. 1006 (2020) 239-244.

DOI: 10.4028/www.scientific.net/msf.1006.239

Google Scholar

[4] A. Pilipenko, H. Pancheva, G. Reznichenko, O. Myrgorod, N. Miroshnichenko, A. Sincheskul, The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide, Eastern-European Journal of Enterprise Technologies. 2/1 (86) (2017) 21-28.

DOI: 10.15587/1729-4061.2017.95989

Google Scholar

[5] C.T. Kwok, S.L. Fong, F.T. Cheng, H.C. Man, Pitting and galvanic corrosion behaviour of laser-welded stainless steels, Journal of Materials Processing Technology 176 (2006) 168–178.

DOI: 10.1016/j.jmatprotec.2006.03.128

Google Scholar

[6] N.A. Solidor, V.P. Ivanov, F.V. Morgay, B.I. Nosovsky, Investigation of corrosion resistance welds metal hose made of steels AISI 304 and AISI 316, Eastern-European Journal of Enterprise Technologies. 76 (2015) 33-39.

DOI: 10.15587/1729-4061.2015.47035

Google Scholar

[7] Z. Tong, Z. Zhentai, Z. Rui, A dynamic welding heat source model in pulsed current gas tungsten arc welding, Journal of Materials Processing Technology. 213 (2013) 2329-2338.

DOI: 10.1016/j.jmatprotec.2013.07.007

Google Scholar

[8] M. Mukherjee, S. Saha, T.K. Pal, P. Kanjilal, Influence of modes of metal transfer on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals, Materials Characterization. 102 (2015) 9–18.

DOI: 10.1016/j.matchar.2015.02.006

Google Scholar

[9] P. Praveen, P.K. Yarlagadda, M.J. Kang, Advancements in pulse gas metal arc welding, Journal of Materials Processing Technology. 164/165 (2005) 1113-1119.

DOI: 10.1016/j.jmatprotec.2005.02.100

Google Scholar

[10] Y. Song, S. Yan, T. Xiao, A study on the macro-micro physical properties in pulsed arc plasma, Transactions of JWRI. 2 (2010) 17–18.

Google Scholar

[11] N. Karunakaran, Effect of Pulsed Current on Temperature Distribution and Characteristics of GTA Welded Magnesium Alloy, IOSR-JMCE. 4(6) (2013) 01-08.

DOI: 10.9790/1684-0460108

Google Scholar

[12] Yu. N. Saraev, O.I. Sleptsov, V.H. Bezborodov, I.V. Nikonova and A.V. Tyutev, Effect of pulse welding on structure and properties of welds of high-strength stell pipes, Fizicheskaya mezomekhanika. 8 (2005) 141-144.

Google Scholar

[13] V.P. Ivanov, E.V. Lavrova, Improving the efficiency of strip cladding by the control of electrode metal transfer, Applied Mechanics and Materials. 682 (2014) 266-269.

DOI: 10.4028/www.scientific.net/amm.682.266

Google Scholar

[14] Ch.V. Pulka, O.N. Shably, V.S. Senchishin, M.V. Sharyk, G.N. Gordan, Influence of vibration of parts on structure and properties of metal in surfacing, The Paton Welding Journal. 1 (2012) 23-25.

Google Scholar

[15] E.O. Aweda, M. Dauda, I.M. Dagwa, E.T. Dauda, Effects of continuous cooling on impact and micro structural properties of low carbon steel welded plate. IJMER. 1 (2015) 22-31.

Google Scholar

[16] S.A. David, S.S. Babu, J.M. Vitek, Welding: solidification and microstructure, JOM. 55 (2003) 14–20.

DOI: 10.1007/s11837-003-0134-7

Google Scholar

[17] M. Shome, O.P. Gupta, O.N. Mohanty, A modified analytical approach for modeling grain growth in the coarse grain HAZ of HSLA steels, Scripta Materialla. 50 (2004) 1007- 1010.

DOI: 10.1016/j.scriptamat.2003.12.030

Google Scholar

[18] V. Ivanov, E. Lavrova, V. Burlaka, V. Duhanets, Calculation of the penetration zone geometric parameters at cladding with a strip electrode. Eastern-European Journal of Enterprise Technologies. 6/5 (2019) 57-62.

DOI: 10.15587/1729-4061.2019.187718

Google Scholar

[19] S.V. Gulakov, V.V. Chigarev, V.P. Ivanov, I.S. Psareva, O.A. Lavrentik, Improvement of technology for hardfacing of metallurgical equipment components, Avtomaticheskaya Svarka. 10 (2004) 54-57.

Google Scholar