Colloid-Chemical Regularities of Reagent Wastewater Treatment of Dairies

Article Preview

Abstract:

A comparative characterization of chemical reagents Al2(SO4)3, FeSO4 and FeCl3 in the process of wastewater treatment of dairies. The colloid-chemical regularities of the course of hydrolysis of chemical reagents depending on the nature, concentration and acidity of wastewater are established. It was found that the greatest degree of purification from ether-soluble substances 87-88% is provided by the addition of FeCl3 at a concentration of 150-200 mg / l at a pH of 9.5-10.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

235-241

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. V. Sakash, A. F. Kolova, T. Ya. Pazenko, Ochistka stochnykh vod po pererabotke moloka, Vestnik KrasGAU, 8 (2016) 97–103.

Google Scholar

[2] T. A. Shevchenko, A. A. Shevchenko, Eksperimentalnoie issledovaniie intensifikatsii protsessa napornoi flotatsii pri ochistke stochnykh vod molokopererabatyvaiushchego predpriiatiia, Vostocho-Yevropeiskii zhurnal peredovykh tekhnologii, 1/6 (79) (2015) 4–12.

Google Scholar

[3] V. A. Andronov, Ye. O. Makarov, Yu. M. Danchenko, T.M. Obizhenko, Research of the regularities of forming and chemical composition of sewage water of a dairy processing company, Technogenic and ecological safety, 7 (1/2020) 13–21.

Google Scholar

[4] Ye.O. Makarov, Ekolohichna nebezpeka vysokokontsentrovanykh stichnykh vod molokopererobnykh pidpryiemstv. Stalyi rozvytok – stan ta perspektyvy: Materialy II Mizhnarodnoho sympoziumu SDEV'2020, Lviv, (2020) 235–236.

Google Scholar

[5] M. Konevych, V. Hud, Osoblyvosti stichnykh vod molokozavodiv. Materialy XV naukovoy konferentsii TNTU imeni Ivana Puliuia, Ternopil, (2011) 309.

Google Scholar

[6] S.B. Zuieva, I.N. Matiushchenko, E.O. Nozdrina, Osobennosti koaguliatsionnoy ochistki stochnykh vod molochnoy promyshlennosti s ispolzovaniiem filtratsionnogo osadka sveklosakharnogo proizvodstva, Voda: khimiia i ekologiia, 6 (2012) 76–79.

Google Scholar

[7] Yu.A. Feofanov, N.L. Litmanova, Obeffektivnosti koaguliatsionnoi ochistki stochnykh vod predpriiatiy molochnoy promyshlennosti, Izvestiia Vuzov, Khimiia I khimicheskaia tekhnologiia, 48, 3 (2005) 113–115.

Google Scholar

[8] Yu.A. Feofanov, N. L. Litmanova, Mekhanizm koaguliatsioonoy ochistki stochnykh vod oksokhloridom aliuminiia, Zhurnal prikladnoy khimii, 74, 8 (2001) 337–339.

Google Scholar

[9] S. Dakovic, Waste water treatment in the oil industry, Fette, Seifen, Anstrichmittel, 1 (1985) 11–15.

Google Scholar

[10] Catawan Roy, Milking money from wastewater, Dairy Foods, 91, 11 (1990) 87–92.

Google Scholar

[11] Gerson de Freitas Silva Valente, Regina Celia Santos Mendonca, Jose Antonio Marques Pereira, The efficiency of electrocoagulation using aluminum electrodes in treating wastewater from a dairy industry, Ciencia Rural, Santa Maria, 45, 9, (2015) 1713–1719.

DOI: 10.1590/0103-8478cr20141172

Google Scholar

[12] B. Chezeau, L. Boudriche, C. Vial and A. Boudjemaa, Treatment of dairy wastewater by electrocoagulation process: Advantages of combined iron/aluminum electrodes (published online 15.07.2019), Separation Science and Technology, 15 (2019).

DOI: 10.1080/01496395.2019.1638935

Google Scholar

[13] A. Aitbara, M. Cherifi, S. Hazourli and J.-P. Leclerc, Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes, Desalination and Water Treatment, 57, 8 (2016) 3395–3404.

DOI: 10.1080/19443994.2014.989411

Google Scholar

[14] F. Benaissa, H. Kermet-Said and N. Moulai-Mostera, Optimization and kinetic modeling of electrocoagulation treatment of dairy wastewater, Desalination and Water Treatment, 57, 13 (2016) 5988–5994.

DOI: 10.1080/19443994.2014.985722

Google Scholar

[15] G. Varank, M. E. Sabuncu, Application of Central Composite Design approach for dairy wastewater treatment by electrocoagulation using iron and aluminum electrodes: modeling and optimization, Desalination and Water Treatment, 56, 1 (2015) 33–54.

DOI: 10.1080/19443994.2014.934731

Google Scholar

[16] A.M. Hivliud, V.V. Sabadash, Ya.M. Humnytskyy, Obgruntuvannia mozhlyvosti vykorystannia pryrodnoho tseolitu dlia ochtshchennia stichnykh vod molokozavodiv, Visnyk LDU BZhD, Zbirnyk naukovykh prats, 12 (2015) 185–190.

Google Scholar

[17] V. Kochubei, S. Yaholnyk, M. Bets, M. Malovanyy, Use of activated clinoptilolite for direct dye-contained wastewater treatment, Chemistry and Chemical Technology, 14 (3) (2020) 386–393.

DOI: 10.23939/chcht14.03.386

Google Scholar

[18] M. S. Malievanyy, I. M. Petrushka, Ochyshchennia stichnykh vod pryrodnymy dispersnymy sorbentamy: monohrafia, Lviv, (2012) 180.

Google Scholar

[19] V. Skliar, G. Krusir, K. Iryne, V. Zakharchuk, M. Malovanyy, Study of the physical and chemical characteristics of an immobilized lipase in the hydrolysis of fat waste, Ecological Questions, 31 (3) (2020) 25–30.

DOI: 10.12775/eq.2020.019

Google Scholar

[20] Yu. Yu. Lurie, Analiticheskaia khimiia promyshlennykh stochnykh vod, (1984) 448.

Google Scholar