Experimental Studies of Fiber-Reinforced Concrete under Axial Tension

Article Preview

Abstract:

The design of a stand for testing concrete and fiber-reinforced concrete specimens-"eight" in tension, which provides axial load application and minimizes the effect of stress concentration at the ends of the specimen. The design of the stand is such that the distance between the axis of load application and the central hinge is 108 cm, and between this hinge and the axis of the test specimen is 21 cm, as a result of which the load transferred to the specimen is 5.143 times greater than the applied one. At the first stage of testing, it was found that the optimal characteristics of the fiber-concrete mixture is a matrix with a large aggregate ≤ 10 mm with 1.0% fiber reinforcement. At the second stage, the ultimate strength of fiber-reinforced concrete for axial tension was determined - 1.28 MPa when reinforced with wave fiber and 1.37 MPa when reinforced with anchor fiber, which amounted to 4.1% and 4.4% of compressive strength, respectively. It was also found that concrete reinforced with anchor fiber has higher deformation properties than concrete reinforced with wave fiber.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

323-329

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Swaddiwudhipong S., Lu H., Wee T (2003). Direct tension test and tensile strain capacity of concrete at early age,Cement and Concrete Research, Vol. 33 (12), pp.2077-2084.

DOI: 10.1016/s0008-8846(03)00231-x

Google Scholar

[2] Choi S., Yang K., Sim J, Choi B (2014). Direct tensile strength of lightweight concrete with different specimen depths and aggregate sizes, Construction and Building Materials, Vol. 63, p.132–141.

DOI: 10.1016/j.conbuildmat.2014.04.055

Google Scholar

[3] Wee T., Lu H., Swaddiwudhipong S (2000). Tensile strain capacity of concrete under various states of stress, Magazine of Concrete Research, vol. 52 (3), pp.185-193.

DOI: 10.1680/macr.2000.52.3.185

Google Scholar

[4] Evdokimova T. S. (2017). Napryazhenno-deformirovannoe sostoyanie i raschet prochnosti kososzhimaemy`kh fibrozhelezobetonny`kh e`lementov: dis. kandidata tekh. nauk: 05.23.01 / Evdokimova Tat`yana Sergeevna, S-Pb., 150 p.

Google Scholar

[5] Kaprielov S. S., Chilin I. A. (2017). Sverkhvy`sokoprochny`j samouplotnyayushhijsya fibrobeton dlya monolitny`kh konstrukczij, Vestnik NICz Stroitel`stvo, Vol. 1(12), p.14 – 22.

Google Scholar

[6] Priev B., Genina E. (2020). Issledovanie sovmestnoj raboty` betona i stalefibrobetona v dvukhslojnom sechenii pri izgibe i raskaly`vanii [Elektronnij resurs]: (e`lektronny`j sbornik statej II mezhdunar. nauch. konf.), ARKhITEKTURNO-STROITEL`NY`J KOMPLEKS: PROBLEMY`, PERSPEKTIVY`, INNOVACzII, p.104 – 112.

Google Scholar

[7] Vasilchenko A., Otrosh Y., Adamenko N., Doronin E., Kovalov A. (2018). Feature of fire resistance calculation of steel structures with intumescent coating. MATEC Web of Conferences, 230: 02036.

DOI: 10.1051/matecconf/201823002036

Google Scholar

[8] Tipka M., Vašková J., Vodička J. (2018). Tensile Strength Tests for Concrete and Fibre Reinforced Concrete, Solid State Phenomena, 272, pp.94-101.

DOI: 10.4028/www.scientific.net/ssp.272.94

Google Scholar

[9] Alhussainy F., Hasan H., Sheikh M Neaz., Hadi M. N. S. (2019). A New Method for Direct Tensile Testing of Concrete. Journal of Testing and Evaluation, 47 (2), pp.704-718.

DOI: 10.1520/jte20170067

Google Scholar

[10] Otrosh Yu., Surianinov M., Golodnov A., Starova O. (2019). Experimental and Computer Researches of Ferroconcrete Beams at High-Temperature Influences, Materials Science Forum 6th International Conference Actual Problems of Engineering Mechanics, (APEM 2019) ISSN:1662-9752, Vol. 968, pp.355-360.

DOI: 10.4028/www.scientific.net/msf.968.355

Google Scholar

[11] Neutov S., Sydorchuk M., Surianinov M. (2019). Experimental Studies of Reinforced Concrete and Fiber-Reinforced Concrete Beams with Short-Term and Long-Term Loads, Materials Science Forum 6th International Conference Actual Problems of Engineering Mechanics, (APEM 2019), ISSN:1662-9752, Vol. 968, pp.227-233.

DOI: 10.4028/www.scientific.net/msf.968.227

Google Scholar

[12] Surianinov M., Neutov S., Korneieva I., Sydorchuk M. (2020). Study and comparison of characteristics of models of hollow-core slabs, reinforced concrete and steel-fiber concrete, 7th International Conference on Actual problems of engineering mechanics, APEM 2020, Odesa; Ukraine, 249859 Vol. 864, pp.9-18.

DOI: 10.4028/www.scientific.net/kem.864.9

Google Scholar