Additive Manufacturing: A Layered Taxonomy and Classification for Material Engineering Process

Article Preview

Abstract:

Material engineers continuously make every effort for the evolution of novel and prevailing production performances to supply our biosphere with resource-proficient, economical, and hygienic substances with superior package operation. The mitigation of energy depletion and gas releases as an utmost significance worldwide is a renowned datum; which also needs the improvement of delicate substances employing budget-proficient and ecologically pleasant methods. Consequently, copious exploration has been aimed in the study of methods retaining a potential to wrestle these widespread essentials. Material engineering processes have advanced as a feasible substitute for conventional steel fragment construction methods. CE has experienced an extraordinary advancement throughout the previous three decades. It was originally utilised uniquely as a state-of-the-art reserve of the paradigm. Referable to the expertise development which permits merging countless engineering procedures for the output of a modified portion that employed intricate configurations, CE expertise has got cumulative responsiveness. As such, this article intends to furnish a comprehensive appraisal of chemical fabrication progressions for steel substance evolution utilised in different applications. The inspection encompasses the current advancement of CE know-hows, a detailed taxonomy and classification of manufacturing operations. The focal point of the upcoming perspective of CE in substance investigation and application is further deliberated

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

157-178

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Yang, S. Ong, and A. Nee, Product Design for Remanufacturing, for Handbook of Manufacturing Engineering and Technology,, ed: Springer, 2013. https://doi.org/10.1007/978-1-4471-4976-7_72-1.

Google Scholar

[2] V. Singh and N. Chauhan, An overview of rapid prototyping technology,, International Journal of Application of Engineering and Technology, vol. 2, no. 3, pp.224-227, (2015).

Google Scholar

[3] E. A. Wrigley, Continuity, chance and change: The character of the industrial revolution in England. Cambridge University Press, (1990).

Google Scholar

[4] D. Raizman, History of modern design: Graphics and products since the industrial revolution. Laurence King Publishing, (2003).

Google Scholar

[5] M. T. Frohlich and J. R. Dixon, Information systems adaptation and the successful implementation of advanced manufacturing technologies,, Decision Sciences, vol. 30, no. 4, pp.921-957, 1999. https://doi.org/10.1111/j.1540-5915.1999.tb00914.x.

DOI: 10.1111/j.1540-5915.1999.tb00914.x

Google Scholar

[6] T. Pereira, J. V. Kennedy, and J. Potgieter, A comparison of traditional manufacturing vs additive manufacturing, the best method for the job,, Procedia Manufacturing, vol. 30, pp.11-18, 2019. https://doi.org/10.1016/j.promfg.2019.02.003.

DOI: 10.1016/j.promfg.2019.02.003

Google Scholar

[7] Y. Lu et al., Flexural strength and Weibull analysis of Y-TZP fabricated by stereolithographic additive manufacturing and subtractive manufacturing,, Journal of the European Ceramic Society, vol. 40, no. 3, pp.826-834, 2020. https://doi.org/10.1016/j.jeurceramsoc.2019.10.058.

DOI: 10.1016/j.jeurceramsoc.2019.10.058

Google Scholar

[8] S. T. Živanović, M. D. Popović, N. M. Vorkapić, M. D. Pjević, and N. R. Slavković, An overview of rapid prototyping technologies using subtractive, additive and formative processes,, FME Transactions, vol. 48, no. 1, pp.246-253, 2020. https://doi.org/10.5937/fmet2001246Z.

DOI: 10.5937/fmet2001246z

Google Scholar

[9] S. Zivanovic, S. Tabakovic, and S. Randjelovicc, Rapid Prototyping of Art Sculptural Shapes According to the Sample.,.

Google Scholar

[10] O. Ivanova, C. Williams, and T. Campbell, Additive manufacturing (AM) and nanotechnology: promises and challenges,, Rapid Prototyping Journal, 2013. https://doi.org/10.1108/RPJ-12-2011-0127.

DOI: 10.1108/rpj-12-2011-0127

Google Scholar

[11] Gebhardt, A. (2011). Understanding Additive Manufacturing. Understanding Additive Manufacturing, I–IX. https://doi.org/10.3139/9783446431621.fm.

DOI: 10.3139/9783446431621.004

Google Scholar

[12] I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies. Springer, 2014. https://doi.org/10.1007/978-1-4939-2113-3.

Google Scholar

[13] D. Strong, M. Kay, B. Conner, T. Wakefield, and G. Manogharan, Hybrid manufacturing–integrating traditional manufacturers with additive manufacturing (AM) supply chain,, Additive Manufacturing, vol. 21, pp.159-173, 2018. https://doi.org/10.1016/j.addma.2018.03.010.

DOI: 10.1016/j.addma.2018.03.010

Google Scholar

[14] B. Mueller, Additive manufacturing technologies–Rapid prototyping to direct digital manufacturing,, Assembly Automation, 2012. https://doi.org/10.1108/aa.2012.03332baa.010.

DOI: 10.1108/aa.2012.03332baa.010

Google Scholar

[15] N. Guo and M. C. Leu, Additive manufacturing: technology, applications and research needs,, Frontiers of Mechanical Engineering, vol. 8, no. 3, pp.215-243, 2013. https://doi.org/10.1007/s11465-013-0248-8.

DOI: 10.1007/s11465-013-0248-8

Google Scholar

[16] A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, Additive manufacturing of ceramics: issues, potentialities, and opportunities,, Journal of the American Ceramic Society, vol. 98, no. 7, pp.1983-2001, 2015. https://doi.org/10.1111/jace.13700.

DOI: 10.1111/jace.13700

Google Scholar

[17] F. Froes and B. Dutta, The additive manufacturing (AM) of titanium alloys,, in Advanced Materials Research, 2014, vol. 1019, pp.19-25: Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/AMR.1019.19.

DOI: 10.4028/www.scientific.net/amr.1019.19

Google Scholar

[18] S. Mellor, L. Hao, and D. Zhang, Additive manufacturing: A framework for implementation,, International journal of production economics, vol. 149, pp.194-201, 2014. https://doi.org/10.1016/j.ijpe.2013.07.008.

DOI: 10.1016/j.ijpe.2013.07.008

Google Scholar

[19] M. Vaezi, H. Seitz, and S. Yang, A review on 3D micro-additive manufacturing technologies,, The International Journal of Advanced Manufacturing Technology, vol. 67, no. 5-8, pp.1721-1754, 2013. https://doi.org/10.1007/s00170-012-4605-2.

DOI: 10.1007/s00170-012-4605-2

Google Scholar

[20] M. Vaezi, S. Chianrabutra, B. Mellor, and S. Yang, Multiple material additive manufacturing–Part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials,, Virtual and Physical Prototyping, vol. 8, no. 1, pp.19-50, 2013. https://doi.org/10.1080/17452759.2013.778175.

DOI: 10.1080/17452759.2013.778175

Google Scholar

[21] M. Baumers, P. Dickens, C. Tuck, and R. Hague, The cost of additive manufacturing: machine productivity, economies of scale and technology-push,, Technological forecasting and social change, vol. 102, pp.193-201, 2016. https://doi.org/10.1016/j.techfore.2015.02.015.

DOI: 10.1016/j.techfore.2015.02.015

Google Scholar

[22] J. Gardan, Additive manufacturing technologies: state of the art and trends,, International Journal of Production Research, vol. 54, no. 10, pp.3118-3132, 2016. https://doi.org/10.1080/00207543.2015.1115909.

DOI: 10.1080/00207543.2015.1115909

Google Scholar

[23] K. S. Prakash, T. Nancharaih, and V. S. Rao, Additive manufacturing techniques in manufacturing-an overview,, Materials Today: Proceedings, vol. 5, no. 2, pp.3873-3882, 2018. https://doi.org/10.1016/j.matpr.2017.11.642.

DOI: 10.1016/j.matpr.2017.11.642

Google Scholar

[24] M. K. Thompson et al., Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,, CIRP annals, vol. 65, no. 2, pp.737-760, 2016. https://doi.org/10.1016/j.cirp.2016.05.004.

DOI: 10.1016/j.cirp.2016.05.004

Google Scholar

[25] C. B. Williams, F. Mistree, and D. W. Rosen, A functional classification framework for the conceptual design of additive manufacturing technologies,, Journal of Mechanical Design, vol. 133, no. 12, 2011. https://doi.org/10.1115/1.4005231.

DOI: 10.1115/1.4005231

Google Scholar

[26] C. S. Frandsen, M. M. Nielsen, A. Chaudhuri, J. Jayaram, and K. Govindan, In search for classification and selection of spare parts suitable for additive manufacturing: a literature review,, International Journal of Production Research, vol. 58, no. 4, pp.970-996, 2020. https://doi.org/10.1080/00207543.2019.1605226.

DOI: 10.1080/00207543.2019.1605226

Google Scholar

[27] M. Monzón, Z. Ortega, A. Martínez, and F. Ortega, Standardisation in additive manufacturing: activities carried out by international organisations and projects,, The international journal of advanced manufacturing technology, vol. 76, no. 5-8, pp.1111-1121, 2015. https://doi.org/10.1007/s00170-014-6334-1.

DOI: 10.1007/s00170-014-6334-1

Google Scholar

[28] T. Vaneker, Material extrusion of continuous fiber reinforced plastics using commingled yarn,, Procedia CIRP, vol. 66, no. ISSN 22128271, pp.317-322, 2017. https://doi.org/10.1016/j.procir.2017.03.367.

DOI: 10.1016/j.procir.2017.03.367

Google Scholar

[29] F. Khodabakhshi, M. Farshidianfar, S. Bakhshivash, A. Gerlich, and A. Khajepour, Dissimilar metals deposition by directed energy based on powder-fed laser additive manufacturing,, Journal of Manufacturing Processes, vol. 43, pp.83-97, 2019. https://doi.org/10.1016/j.jmapro.2019.05.018.

DOI: 10.1016/j.jmapro.2019.05.018

Google Scholar

[30] A. Saboori, D. Gallo, S. Biamino, P. Fino, and M. Lombardi, An overview of additive manufacturing of titanium components by directed energy deposition: microstructure and mechanical properties,, Applied Sciences, vol. 7, no. 9, p.883, 2017. https://doi.org/10.3390/app7090883.

DOI: 10.3390/app7090883

Google Scholar

[31] A. Dass and A. Moridi, State of the art in directed energy deposition: From additive manufacturing to materials design,, Coatings, vol. 9, no. 7, p.418, 2019. https://doi.org/10.3390/coatings9070418.

DOI: 10.3390/coatings9070418

Google Scholar

[32] P. Stavropoulos and P. Foteinopoulos, Modelling of additive manufacturing processes: a review and classification,, Manufacturing Review, vol. 5, p.2, 2018. https://doi.org/10.1051/mfreview /2017014.

DOI: 10.1051/mfreview/2017014

Google Scholar

[33] S. Yang and Y. F. Zhao, Additive manufacturing-enabled design theory and methodology: a critical review,, The International Journal of Advanced Manufacturing Technology, vol. 80, no. 1-4, pp.327-342, 2015. https://doi.org/10.1007/s00170-015-6994-5.

DOI: 10.1007/s00170-015-6994-5

Google Scholar

[34] T. Femmer, I. Flack, and M. Wessling, Additive manufacturing in fluid process engineering,, Chemie Ingenieur Technik, vol. 88, no. 5, pp.535-552, 2016. https://doi.org/10.1002/cite.201500086.

DOI: 10.1002/cite.201500086

Google Scholar

[35] P.-H. Tseng, K.-T. Tsai, A.-L. Chen, and C.-C. Wang, Performance of novel liquid-cooled porous heat sink via 3-D laser additive manufacturing,, International Journal of Heat and Mass Transfer, vol. 137, pp.558-564, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.116.

DOI: 10.1016/j.ijheatmasstransfer.2019.03.116

Google Scholar

[36] S. C. Ligon, R. Liska, J. r. Stampfl, M. Gurr, and R. Mülhaupt, Polymers for 3D printing and customised additive manufacturing,, Chemical reviews, vol. 117, no. 15, pp.10212-10290, 2017. https://doi.org/10.1021/acs.chemrev.7b00074.

DOI: 10.1021/acs.chemrev.7b00074

Google Scholar

[37] J. Dilag, T. Chen, S. Li, and S. A. Bateman, Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies,, Additive Manufacturing, vol. 27, pp.167-174, 2019. https://doi.org/10.1016/j.addma.2019.01.009.

DOI: 10.1016/j.addma.2019.01.009

Google Scholar

[38] Y. L. Yap, C. Wang, S. L. Sing, V. Dikshit, W. Y. Yeong, and J. Wei, Material jetting additive manufacturing: An experimental study using designed metrological benchmarks,, Precision engineering, vol. 50, pp.275-285, 2017. https://doi.org/10.1016/j.precisioneng.2017.05.015.

DOI: 10.1016/j.precisioneng.2017.05.015

Google Scholar

[39] J. Frketic, T. Dickens, and S. Ramakrishnan, Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing,, Additive Manufacturing, vol. 14, pp.69-86, 2017. https://doi.org/10.1016/j.addma.2017.01.003.

DOI: 10.1016/j.addma.2017.01.003

Google Scholar

[40] S. Bose, D. Ke, H. Sahasrabudhe, and A. Bandyopadhyay, Additive manufacturing of biomaterials,, Progress in Materials Science, vol. 93, pp.45-111, 2018. https://doi.org/10.1016/j.pmatsci.2017.08.003.

DOI: 10.1016/j.pmatsci.2017.08.003

Google Scholar

[41] X. Xu et al., Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction,, Additive Manufacturing, vol. 33, p.101071, 2020. https://doi.org/10.1016/j.addma.2020.101071.

DOI: 10.1016/j.addma.2020.101071

Google Scholar

[42] Y. Li, M. Wang, H. Wu, F. He, Y. Chen, and S. Wu, Cure behavior of colorful ZrO2 suspensions during Digital light processing (DLP) based stereolithography process,, Journal of the European Ceramic Society, vol. 39, no. 15, pp.4921-4927, 2019. https://doi.org/10.1016/j.jeurceramsoc.2019.07.035.

DOI: 10.1016/j.jeurceramsoc.2019.07.035

Google Scholar

[43] J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,, Materials, vol. 11, no. 5, p.840, 2018. https://doi.org/10.3390/ma11050840.

DOI: 10.3390/ma11050840

Google Scholar

[44] A. Goyanes, N. Allahham, S. J. Trenfield, E. Stoyanov, S. Gaisford, and A. W. Basit, Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process,, International journal of pharmaceutics, vol. 567, p.118471, 2019. https://doi.org/10.1016/j.ijpharm.2019.118471.

DOI: 10.1016/j.ijpharm.2019.118471

Google Scholar

[45] W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, and R. Lupoi, Solid-state additive manufacturing and repairing by cold spraying: A review,, Journal of materials science & technology, vol. 34, no. 3, pp.440-457, 2018. https://doi.org/10.1016/j.jmst.2017.09.015.

DOI: 10.1016/j.jmst.2017.09.015

Google Scholar

[46] T. Monaghan, A. J. Capel, S. Christie, R. A. Harris, and R. J. Friel, Solid-state additive manufacturing for metallised optical fiber integration,, Composites Part A: Applied Science and Manufacturing, vol. 76, pp.181-193, 2015. https://doi.org/10.1016/j.compositesa.2015.05.032.

DOI: 10.1016/j.compositesa.2015.05.032

Google Scholar

[47] M. A. Masuelli, Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes,, in Fiber Reinforced Polymers-The Technology Applied for Concrete Repair: IntechOpen, 2013. https://doi.org/10.5772/3162.

DOI: 10.5772/54629

Google Scholar

[48] C. M. González-Henríquez, M. A. Sarabia-Vallejos, and J. Rodriguez-Hernandez, Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications,, Progress in Polymer Science, vol. 94, pp.57-116, 2019. https://doi.org/10.1016/j.progpolymsci.2019.03.001.

DOI: 10.1016/j.progpolymsci.2019.03.001

Google Scholar

[49] X. Gong, T. Anderson, and K. Chou, Review on powder-based electron beam additive manufacturing technology,, in International Symposium on Flexible Automation, 2012, vol. 45110, pp.507-515: American Society of Mechanical Engineers. https://doi.org/10.1115/ISFA2012-7256.

DOI: 10.1115/isfa2012-7256

Google Scholar

[50] H. Taheri, M. R. B. M. Shoaib, L. W. Koester, T. A. Bigelow, P. C. Collins, and L. J. Bond, Powder-based additive manufacturing-a review of types of defects, generation mechanisms, detection, property evaluation and metrology,, International Journal of Additive and Subtractive Materials Manufacturing, vol. 1, no. 2, pp.172-209, 2017. https://doi.org/10.1504/IJASMM.2017.10009247.

DOI: 10.1504/ijasmm.2017.10009247

Google Scholar

[51] A. Azhari, E. Marzbanrad, D. Yilman, E. Toyserkani, and M. A. Pope, Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes,, Carbon, vol. 119, pp.257-266, 2017. https://doi.org/10.1016/j.carbon.2017.04.028.

DOI: 10.1016/j.carbon.2017.04.028

Google Scholar

[52] H. Fayazfar et al., A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties,, Materials & Design, vol. 144, pp.98-128, 2018. https://doi.org/10.1016/j.matdes.2018.02.018.

DOI: 10.1016/j.matdes.2018.02.018

Google Scholar

[53] A. C. Bailey, In-Situ Densification of Metal Binder Jet Printed Components via Nanoparticles,, North Carolina Agricultural and Technical State University, (2018).

Google Scholar

[54] R. Prieto Padilla, Selective laser melting of silica glass powders,, (2018).

Google Scholar

[55] S. Kaierle, A. Barroi, C. Noelke, J. Hermsdorf, L. Overmeyer, and H. Haferkamp, Review on Laser Deposition Welding: From Micro to Macro,, Physics Procedia, vol. 39, pp.336-345, 2012. https://doi.org/10.1016/j.phpro.2012.10.046.

DOI: 10.1016/j.phpro.2012.10.046

Google Scholar

[56] D.-S. Shim, G.-Y. Baek, J.-S. Seo, G.-Y. Shin, K.-P. Kim, and K.-Y. Lee, Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process,, Optics & Laser Technology, vol. 86, pp.69-78, 2016. https://doi.org/10.1016/j.optlastec.2016.07.001.

DOI: 10.1016/j.optlastec.2016.07.001

Google Scholar

[57] Q. Zeng, Z. Xu, Y. Tian, and Y. Qin, Advancement in additive manufacturing & numerical modelling considerations of direct energy deposition process,, in Proceeding of the 14th International Conference on Manufacturing Research: Advances in Manufacturing Technology XXX. Goy, YM & Case, K.(eds.). Amsterdam: IOS Press, 2016, pp.104-109.

Google Scholar

[58] Q. ZENG, Z. XUa, Y. TIAN, and Y. QINa, Progress of the Modelling of a Direct Energy Deposition Process in Additive Manufacturing.,.

Google Scholar

[59] N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting,, Progress in Materials Science, vol. 106, 2019. https://doi.org/10.1016/j.pmatsci.2019.100578.

DOI: 10.1016/j.pmatsci.2019.100578

Google Scholar

[60] Y. Pan, C. Pan, Z. Yang, and M. Chen, Resource allocation for D2D communications underlaying a NOMA-based cellular network,, IEEE Wirel. Commun. Lett, vol. 7, pp.130-133, 2018. https://doi.org/10.1109/LWC.2017.2759114.

DOI: 10.1109/lwc.2017.2759114

Google Scholar

[61] K. Mahmood and A. J. Pinkerton, Direct laser deposition with different types of 316L steel particle: A comparative study of final part properties,, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 227, no. 4, pp.520-531, 2013. https://doi.org/10.1177/0954405413475961.

DOI: 10.1177/0954405413475961

Google Scholar

[62] K. Zhang, W. Liu, and X. Shang, Research on the processing experiments of laser metal deposition shaping,, Optics & Laser Technology, vol. 39, no. 3, pp.549-557, 2007. https://doi.org/10.1016/j.optlastec.2005.10.009.

DOI: 10.1016/j.optlastec.2005.10.009

Google Scholar

[63] M. O. Shaikh et al., Additive manufacturing using fine wire-based laser metal deposition,, Rapid Prototyping Journal, vol. 26, no. 3, pp.473-483, 2019. https://doi.org/10.1108/RPJ-04-2019-0110.

DOI: 10.1108/rpj-04-2019-0110

Google Scholar

[64] R. Banerjee, P. C. Collins, A. Genç, and H. L. Fraser, Direct laser deposition of in situ Ti–6Al–4V–TiB composites,, Materials Science and Engineering: A, vol. 358, no. 1-2, pp.343-349, 2003. https://doi.org/10.1016/S0921-5093(03)00299-5.

DOI: 10.1016/s0921-5093(03)00299-5

Google Scholar

[65] D. Ding, Z. Pan, S. van Duin, H. Li, and C. Shen, Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing,, Materials (Basel), vol. 9, no. 8, Aug 3 2016. https://doi.org/10.3390/ma9080652.

DOI: 10.3390/ma9080652

Google Scholar

[66] K. Arntz, M. Wegener, and Y. Liu, Computer aided manufacturing supported process planning of additive manufacturing by laser deposition welding,, Journal of Laser Applications, vol. 27, no. S1, p. S14002, 2015. https://doi.org/10.2351/1.4823748.

DOI: 10.2351/1.4823748

Google Scholar

[67] X. Wang, X. Gong, and K. Chou, Scanning Speed Effect on Mechanical Properties of Ti-6Al-4V Alloy Processed by Electron Beam Additive Manufacturing,, Procedia Manufacturing, vol. 1, pp.287-295, 2015. https://doi.org/10.1016/j.promfg.2015.09.026.

DOI: 10.1016/j.promfg.2015.09.026

Google Scholar

[68] Q. Ye, M. Al-Shalash, C. Caramanis, and J. G. Andrews, Distributed resource allocation in device-to-device enhanced cellular networks,, IEEE Transactions on Communications, vol. 63, no. 2, pp.441-454, 2015. https://doi.org/10.1109/TCOMM.2014.2386874.

DOI: 10.1109/tcomm.2014.2386874

Google Scholar

[69] S. Jianfang, L. Zhongchun, Study of numerical simulation method modelling gas injection into fractured reservoirs,, Mining of Mineral Deposits, vol. 13, no. 2, pp.41-45. https://doi.org/10.33271/mining13.02.041.

DOI: 10.33271/mining13.02.041

Google Scholar

[70] M. J. Heiden et al., Evolution of 316L stainless steel feedstock due to laser powder bed fusion process,, Additive Manufacturing, vol. 25, pp.84-103, 2019. https://doi.org/10.1016/j.addma.2018.10.019.

DOI: 10.1016/j.addma.2018.10.019

Google Scholar

[71] N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting,, Progress in Materials Science, vol. 106, p.100578, 2019. https://doi.org/10.1016/j.pmatsci.2019.100578.

DOI: 10.1016/j.pmatsci.2019.100578

Google Scholar

[72] M. Revilla-León, L. Ceballos, I. Martínez-Klemm, and M. Özcan, Discrepancy of complete-arch titanium frameworks manufactured using selective laser melting and electron beam melting additive manufacturing technologies,, The Journal of prosthetic dentistry, vol. 120, no. 6, pp.942-947, 2018. https://doi.org/10.1016/j.prosdent.2018.02.010.

DOI: 10.1016/j.prosdent.2018.02.010

Google Scholar

[73] F. Fina, A. Goyanes, S. Gaisford, and A. W. Basit, Selective laser sintering (SLS) 3D printing of medicines,, International journal of pharmaceutics, vol. 529, no. 1-2, pp.285-293, 2017. https://doi.org/10.1016/j.ijpharm.2017.06.082.

DOI: 10.1016/j.ijpharm.2017.06.082

Google Scholar

[74] S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria, Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs,, Journal of Orthopaedic Research, vol. 34, no. 3, pp.369-385, 2016. https://doi.org/10.1002/jor.23075.

DOI: 10.1002/jor.23075

Google Scholar

[75] H. Bikas, A. Lianos, and P. Stavropoulos, A design framework for additive manufacturing,, The International Journal of Advanced Manufacturing Technology, vol. 103, no. 9-12, pp.3769-3783, 2019. https://doi.org/10.1007/s00170-019-03627-z.

DOI: 10.1007/s00170-019-03627-z

Google Scholar

[76] A. Awad, S. J. Trenfield, A. Goyanes, S. Gaisford, and A. W. Basit, Reshaping drug development using 3D printing,, Drug discovery today, vol. 23, no. 8, pp.1547-1555, 2018. https://doi.org/10.1016/j.drudis.2018.05.025.

DOI: 10.1016/j.drudis.2018.05.025

Google Scholar

[77] R. Velu, F. Raspall, and S. Singamneni, 3D printing technologies and composite materials for structural applications,, in Green Composites for Automotive Applications: Elsevier, 2019, pp.171-196. https://doi.org/10.1016/B978-0-08-102177-4.00008-2.

DOI: 10.1016/b978-0-08-102177-4.00008-2

Google Scholar

[78] T. G. Spears and S. A. Gold, In-process sensing in selective laser melting (SLM) additive manufacturing,, Integrating Materials and Manufacturing Innovation, vol. 5, no. 1, pp.16-40, 2016. https://doi.org/10.1186/s40192-016-0045-4.

DOI: 10.1186/s40192-016-0045-4

Google Scholar

[79] D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. P. Ambrosio, and E. Atzeni, From Powders to Dense Metal Parts: Characterisation of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering,, Materials (Basel), vol. 6, no. 3, pp.856-869, Mar 6 2013. https://doi.org/10.3390/ma6030856.

DOI: 10.3390/ma6030856

Google Scholar

[80] C. Körner, Additive manufacturing of metallic components by selective electron beam melting a review,, International Materials Reviews, vol. 61, no. 5, pp.361-377, 2016. https://doi.org/10.1080/09506608.2016.1176289.

DOI: 10.1080/09506608.2016.1176289

Google Scholar

[81] J. P. Laverty, D. Wood, and J. Turchek, Software Defined Networking (SDN) Network Virtualization for the IS Curriculum?,, in Proceedings of the Information Systems Educators Conference ISSN, 2014, vol. 2167, p.1435: Citeseer.

Google Scholar