[1]
S. Yang, S. Ong, and A. Nee, Product Design for Remanufacturing, for Handbook of Manufacturing Engineering and Technology,, ed: Springer, 2013. https://doi.org/10.1007/978-1-4471-4976-7_72-1.
Google Scholar
[2]
V. Singh and N. Chauhan, An overview of rapid prototyping technology,, International Journal of Application of Engineering and Technology, vol. 2, no. 3, pp.224-227, (2015).
Google Scholar
[3]
E. A. Wrigley, Continuity, chance and change: The character of the industrial revolution in England. Cambridge University Press, (1990).
Google Scholar
[4]
D. Raizman, History of modern design: Graphics and products since the industrial revolution. Laurence King Publishing, (2003).
Google Scholar
[5]
M. T. Frohlich and J. R. Dixon, Information systems adaptation and the successful implementation of advanced manufacturing technologies,, Decision Sciences, vol. 30, no. 4, pp.921-957, 1999. https://doi.org/10.1111/j.1540-5915.1999.tb00914.x.
DOI: 10.1111/j.1540-5915.1999.tb00914.x
Google Scholar
[6]
T. Pereira, J. V. Kennedy, and J. Potgieter, A comparison of traditional manufacturing vs additive manufacturing, the best method for the job,, Procedia Manufacturing, vol. 30, pp.11-18, 2019. https://doi.org/10.1016/j.promfg.2019.02.003.
DOI: 10.1016/j.promfg.2019.02.003
Google Scholar
[7]
Y. Lu et al., Flexural strength and Weibull analysis of Y-TZP fabricated by stereolithographic additive manufacturing and subtractive manufacturing,, Journal of the European Ceramic Society, vol. 40, no. 3, pp.826-834, 2020. https://doi.org/10.1016/j.jeurceramsoc.2019.10.058.
DOI: 10.1016/j.jeurceramsoc.2019.10.058
Google Scholar
[8]
S. T. Živanović, M. D. Popović, N. M. Vorkapić, M. D. Pjević, and N. R. Slavković, An overview of rapid prototyping technologies using subtractive, additive and formative processes,, FME Transactions, vol. 48, no. 1, pp.246-253, 2020. https://doi.org/10.5937/fmet2001246Z.
DOI: 10.5937/fmet2001246z
Google Scholar
[9]
S. Zivanovic, S. Tabakovic, and S. Randjelovicc, Rapid Prototyping of Art Sculptural Shapes According to the Sample.,.
Google Scholar
[10]
O. Ivanova, C. Williams, and T. Campbell, Additive manufacturing (AM) and nanotechnology: promises and challenges,, Rapid Prototyping Journal, 2013. https://doi.org/10.1108/RPJ-12-2011-0127.
DOI: 10.1108/rpj-12-2011-0127
Google Scholar
[11]
Gebhardt, A. (2011). Understanding Additive Manufacturing. Understanding Additive Manufacturing, I–IX. https://doi.org/10.3139/9783446431621.fm.
DOI: 10.3139/9783446431621.004
Google Scholar
[12]
I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies. Springer, 2014. https://doi.org/10.1007/978-1-4939-2113-3.
Google Scholar
[13]
D. Strong, M. Kay, B. Conner, T. Wakefield, and G. Manogharan, Hybrid manufacturing–integrating traditional manufacturers with additive manufacturing (AM) supply chain,, Additive Manufacturing, vol. 21, pp.159-173, 2018. https://doi.org/10.1016/j.addma.2018.03.010.
DOI: 10.1016/j.addma.2018.03.010
Google Scholar
[14]
B. Mueller, Additive manufacturing technologies–Rapid prototyping to direct digital manufacturing,, Assembly Automation, 2012. https://doi.org/10.1108/aa.2012.03332baa.010.
DOI: 10.1108/aa.2012.03332baa.010
Google Scholar
[15]
N. Guo and M. C. Leu, Additive manufacturing: technology, applications and research needs,, Frontiers of Mechanical Engineering, vol. 8, no. 3, pp.215-243, 2013. https://doi.org/10.1007/s11465-013-0248-8.
DOI: 10.1007/s11465-013-0248-8
Google Scholar
[16]
A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, Additive manufacturing of ceramics: issues, potentialities, and opportunities,, Journal of the American Ceramic Society, vol. 98, no. 7, pp.1983-2001, 2015. https://doi.org/10.1111/jace.13700.
DOI: 10.1111/jace.13700
Google Scholar
[17]
F. Froes and B. Dutta, The additive manufacturing (AM) of titanium alloys,, in Advanced Materials Research, 2014, vol. 1019, pp.19-25: Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/AMR.1019.19.
DOI: 10.4028/www.scientific.net/amr.1019.19
Google Scholar
[18]
S. Mellor, L. Hao, and D. Zhang, Additive manufacturing: A framework for implementation,, International journal of production economics, vol. 149, pp.194-201, 2014. https://doi.org/10.1016/j.ijpe.2013.07.008.
DOI: 10.1016/j.ijpe.2013.07.008
Google Scholar
[19]
M. Vaezi, H. Seitz, and S. Yang, A review on 3D micro-additive manufacturing technologies,, The International Journal of Advanced Manufacturing Technology, vol. 67, no. 5-8, pp.1721-1754, 2013. https://doi.org/10.1007/s00170-012-4605-2.
DOI: 10.1007/s00170-012-4605-2
Google Scholar
[20]
M. Vaezi, S. Chianrabutra, B. Mellor, and S. Yang, Multiple material additive manufacturing–Part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials,, Virtual and Physical Prototyping, vol. 8, no. 1, pp.19-50, 2013. https://doi.org/10.1080/17452759.2013.778175.
DOI: 10.1080/17452759.2013.778175
Google Scholar
[21]
M. Baumers, P. Dickens, C. Tuck, and R. Hague, The cost of additive manufacturing: machine productivity, economies of scale and technology-push,, Technological forecasting and social change, vol. 102, pp.193-201, 2016. https://doi.org/10.1016/j.techfore.2015.02.015.
DOI: 10.1016/j.techfore.2015.02.015
Google Scholar
[22]
J. Gardan, Additive manufacturing technologies: state of the art and trends,, International Journal of Production Research, vol. 54, no. 10, pp.3118-3132, 2016. https://doi.org/10.1080/00207543.2015.1115909.
DOI: 10.1080/00207543.2015.1115909
Google Scholar
[23]
K. S. Prakash, T. Nancharaih, and V. S. Rao, Additive manufacturing techniques in manufacturing-an overview,, Materials Today: Proceedings, vol. 5, no. 2, pp.3873-3882, 2018. https://doi.org/10.1016/j.matpr.2017.11.642.
DOI: 10.1016/j.matpr.2017.11.642
Google Scholar
[24]
M. K. Thompson et al., Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,, CIRP annals, vol. 65, no. 2, pp.737-760, 2016. https://doi.org/10.1016/j.cirp.2016.05.004.
DOI: 10.1016/j.cirp.2016.05.004
Google Scholar
[25]
C. B. Williams, F. Mistree, and D. W. Rosen, A functional classification framework for the conceptual design of additive manufacturing technologies,, Journal of Mechanical Design, vol. 133, no. 12, 2011. https://doi.org/10.1115/1.4005231.
DOI: 10.1115/1.4005231
Google Scholar
[26]
C. S. Frandsen, M. M. Nielsen, A. Chaudhuri, J. Jayaram, and K. Govindan, In search for classification and selection of spare parts suitable for additive manufacturing: a literature review,, International Journal of Production Research, vol. 58, no. 4, pp.970-996, 2020. https://doi.org/10.1080/00207543.2019.1605226.
DOI: 10.1080/00207543.2019.1605226
Google Scholar
[27]
M. Monzón, Z. Ortega, A. Martínez, and F. Ortega, Standardisation in additive manufacturing: activities carried out by international organisations and projects,, The international journal of advanced manufacturing technology, vol. 76, no. 5-8, pp.1111-1121, 2015. https://doi.org/10.1007/s00170-014-6334-1.
DOI: 10.1007/s00170-014-6334-1
Google Scholar
[28]
T. Vaneker, Material extrusion of continuous fiber reinforced plastics using commingled yarn,, Procedia CIRP, vol. 66, no. ISSN 22128271, pp.317-322, 2017. https://doi.org/10.1016/j.procir.2017.03.367.
DOI: 10.1016/j.procir.2017.03.367
Google Scholar
[29]
F. Khodabakhshi, M. Farshidianfar, S. Bakhshivash, A. Gerlich, and A. Khajepour, Dissimilar metals deposition by directed energy based on powder-fed laser additive manufacturing,, Journal of Manufacturing Processes, vol. 43, pp.83-97, 2019. https://doi.org/10.1016/j.jmapro.2019.05.018.
DOI: 10.1016/j.jmapro.2019.05.018
Google Scholar
[30]
A. Saboori, D. Gallo, S. Biamino, P. Fino, and M. Lombardi, An overview of additive manufacturing of titanium components by directed energy deposition: microstructure and mechanical properties,, Applied Sciences, vol. 7, no. 9, p.883, 2017. https://doi.org/10.3390/app7090883.
DOI: 10.3390/app7090883
Google Scholar
[31]
A. Dass and A. Moridi, State of the art in directed energy deposition: From additive manufacturing to materials design,, Coatings, vol. 9, no. 7, p.418, 2019. https://doi.org/10.3390/coatings9070418.
DOI: 10.3390/coatings9070418
Google Scholar
[32]
P. Stavropoulos and P. Foteinopoulos, Modelling of additive manufacturing processes: a review and classification,, Manufacturing Review, vol. 5, p.2, 2018. https://doi.org/10.1051/mfreview /2017014.
DOI: 10.1051/mfreview/2017014
Google Scholar
[33]
S. Yang and Y. F. Zhao, Additive manufacturing-enabled design theory and methodology: a critical review,, The International Journal of Advanced Manufacturing Technology, vol. 80, no. 1-4, pp.327-342, 2015. https://doi.org/10.1007/s00170-015-6994-5.
DOI: 10.1007/s00170-015-6994-5
Google Scholar
[34]
T. Femmer, I. Flack, and M. Wessling, Additive manufacturing in fluid process engineering,, Chemie Ingenieur Technik, vol. 88, no. 5, pp.535-552, 2016. https://doi.org/10.1002/cite.201500086.
DOI: 10.1002/cite.201500086
Google Scholar
[35]
P.-H. Tseng, K.-T. Tsai, A.-L. Chen, and C.-C. Wang, Performance of novel liquid-cooled porous heat sink via 3-D laser additive manufacturing,, International Journal of Heat and Mass Transfer, vol. 137, pp.558-564, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.116.
DOI: 10.1016/j.ijheatmasstransfer.2019.03.116
Google Scholar
[36]
S. C. Ligon, R. Liska, J. r. Stampfl, M. Gurr, and R. Mülhaupt, Polymers for 3D printing and customised additive manufacturing,, Chemical reviews, vol. 117, no. 15, pp.10212-10290, 2017. https://doi.org/10.1021/acs.chemrev.7b00074.
DOI: 10.1021/acs.chemrev.7b00074
Google Scholar
[37]
J. Dilag, T. Chen, S. Li, and S. A. Bateman, Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies,, Additive Manufacturing, vol. 27, pp.167-174, 2019. https://doi.org/10.1016/j.addma.2019.01.009.
DOI: 10.1016/j.addma.2019.01.009
Google Scholar
[38]
Y. L. Yap, C. Wang, S. L. Sing, V. Dikshit, W. Y. Yeong, and J. Wei, Material jetting additive manufacturing: An experimental study using designed metrological benchmarks,, Precision engineering, vol. 50, pp.275-285, 2017. https://doi.org/10.1016/j.precisioneng.2017.05.015.
DOI: 10.1016/j.precisioneng.2017.05.015
Google Scholar
[39]
J. Frketic, T. Dickens, and S. Ramakrishnan, Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing,, Additive Manufacturing, vol. 14, pp.69-86, 2017. https://doi.org/10.1016/j.addma.2017.01.003.
DOI: 10.1016/j.addma.2017.01.003
Google Scholar
[40]
S. Bose, D. Ke, H. Sahasrabudhe, and A. Bandyopadhyay, Additive manufacturing of biomaterials,, Progress in Materials Science, vol. 93, pp.45-111, 2018. https://doi.org/10.1016/j.pmatsci.2017.08.003.
DOI: 10.1016/j.pmatsci.2017.08.003
Google Scholar
[41]
X. Xu et al., Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction,, Additive Manufacturing, vol. 33, p.101071, 2020. https://doi.org/10.1016/j.addma.2020.101071.
DOI: 10.1016/j.addma.2020.101071
Google Scholar
[42]
Y. Li, M. Wang, H. Wu, F. He, Y. Chen, and S. Wu, Cure behavior of colorful ZrO2 suspensions during Digital light processing (DLP) based stereolithography process,, Journal of the European Ceramic Society, vol. 39, no. 15, pp.4921-4927, 2019. https://doi.org/10.1016/j.jeurceramsoc.2019.07.035.
DOI: 10.1016/j.jeurceramsoc.2019.07.035
Google Scholar
[43]
J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,, Materials, vol. 11, no. 5, p.840, 2018. https://doi.org/10.3390/ma11050840.
DOI: 10.3390/ma11050840
Google Scholar
[44]
A. Goyanes, N. Allahham, S. J. Trenfield, E. Stoyanov, S. Gaisford, and A. W. Basit, Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process,, International journal of pharmaceutics, vol. 567, p.118471, 2019. https://doi.org/10.1016/j.ijpharm.2019.118471.
DOI: 10.1016/j.ijpharm.2019.118471
Google Scholar
[45]
W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, and R. Lupoi, Solid-state additive manufacturing and repairing by cold spraying: A review,, Journal of materials science & technology, vol. 34, no. 3, pp.440-457, 2018. https://doi.org/10.1016/j.jmst.2017.09.015.
DOI: 10.1016/j.jmst.2017.09.015
Google Scholar
[46]
T. Monaghan, A. J. Capel, S. Christie, R. A. Harris, and R. J. Friel, Solid-state additive manufacturing for metallised optical fiber integration,, Composites Part A: Applied Science and Manufacturing, vol. 76, pp.181-193, 2015. https://doi.org/10.1016/j.compositesa.2015.05.032.
DOI: 10.1016/j.compositesa.2015.05.032
Google Scholar
[47]
M. A. Masuelli, Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes,, in Fiber Reinforced Polymers-The Technology Applied for Concrete Repair: IntechOpen, 2013. https://doi.org/10.5772/3162.
DOI: 10.5772/54629
Google Scholar
[48]
C. M. González-Henríquez, M. A. Sarabia-Vallejos, and J. Rodriguez-Hernandez, Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications,, Progress in Polymer Science, vol. 94, pp.57-116, 2019. https://doi.org/10.1016/j.progpolymsci.2019.03.001.
DOI: 10.1016/j.progpolymsci.2019.03.001
Google Scholar
[49]
X. Gong, T. Anderson, and K. Chou, Review on powder-based electron beam additive manufacturing technology,, in International Symposium on Flexible Automation, 2012, vol. 45110, pp.507-515: American Society of Mechanical Engineers. https://doi.org/10.1115/ISFA2012-7256.
DOI: 10.1115/isfa2012-7256
Google Scholar
[50]
H. Taheri, M. R. B. M. Shoaib, L. W. Koester, T. A. Bigelow, P. C. Collins, and L. J. Bond, Powder-based additive manufacturing-a review of types of defects, generation mechanisms, detection, property evaluation and metrology,, International Journal of Additive and Subtractive Materials Manufacturing, vol. 1, no. 2, pp.172-209, 2017. https://doi.org/10.1504/IJASMM.2017.10009247.
DOI: 10.1504/ijasmm.2017.10009247
Google Scholar
[51]
A. Azhari, E. Marzbanrad, D. Yilman, E. Toyserkani, and M. A. Pope, Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes,, Carbon, vol. 119, pp.257-266, 2017. https://doi.org/10.1016/j.carbon.2017.04.028.
DOI: 10.1016/j.carbon.2017.04.028
Google Scholar
[52]
H. Fayazfar et al., A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties,, Materials & Design, vol. 144, pp.98-128, 2018. https://doi.org/10.1016/j.matdes.2018.02.018.
DOI: 10.1016/j.matdes.2018.02.018
Google Scholar
[53]
A. C. Bailey, In-Situ Densification of Metal Binder Jet Printed Components via Nanoparticles,, North Carolina Agricultural and Technical State University, (2018).
Google Scholar
[54]
R. Prieto Padilla, Selective laser melting of silica glass powders,, (2018).
Google Scholar
[55]
S. Kaierle, A. Barroi, C. Noelke, J. Hermsdorf, L. Overmeyer, and H. Haferkamp, Review on Laser Deposition Welding: From Micro to Macro,, Physics Procedia, vol. 39, pp.336-345, 2012. https://doi.org/10.1016/j.phpro.2012.10.046.
DOI: 10.1016/j.phpro.2012.10.046
Google Scholar
[56]
D.-S. Shim, G.-Y. Baek, J.-S. Seo, G.-Y. Shin, K.-P. Kim, and K.-Y. Lee, Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process,, Optics & Laser Technology, vol. 86, pp.69-78, 2016. https://doi.org/10.1016/j.optlastec.2016.07.001.
DOI: 10.1016/j.optlastec.2016.07.001
Google Scholar
[57]
Q. Zeng, Z. Xu, Y. Tian, and Y. Qin, Advancement in additive manufacturing & numerical modelling considerations of direct energy deposition process,, in Proceeding of the 14th International Conference on Manufacturing Research: Advances in Manufacturing Technology XXX. Goy, YM & Case, K.(eds.). Amsterdam: IOS Press, 2016, pp.104-109.
Google Scholar
[58]
Q. ZENG, Z. XUa, Y. TIAN, and Y. QINa, Progress of the Modelling of a Direct Energy Deposition Process in Additive Manufacturing.,.
Google Scholar
[59]
N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting,, Progress in Materials Science, vol. 106, 2019. https://doi.org/10.1016/j.pmatsci.2019.100578.
DOI: 10.1016/j.pmatsci.2019.100578
Google Scholar
[60]
Y. Pan, C. Pan, Z. Yang, and M. Chen, Resource allocation for D2D communications underlaying a NOMA-based cellular network,, IEEE Wirel. Commun. Lett, vol. 7, pp.130-133, 2018. https://doi.org/10.1109/LWC.2017.2759114.
DOI: 10.1109/lwc.2017.2759114
Google Scholar
[61]
K. Mahmood and A. J. Pinkerton, Direct laser deposition with different types of 316L steel particle: A comparative study of final part properties,, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 227, no. 4, pp.520-531, 2013. https://doi.org/10.1177/0954405413475961.
DOI: 10.1177/0954405413475961
Google Scholar
[62]
K. Zhang, W. Liu, and X. Shang, Research on the processing experiments of laser metal deposition shaping,, Optics & Laser Technology, vol. 39, no. 3, pp.549-557, 2007. https://doi.org/10.1016/j.optlastec.2005.10.009.
DOI: 10.1016/j.optlastec.2005.10.009
Google Scholar
[63]
M. O. Shaikh et al., Additive manufacturing using fine wire-based laser metal deposition,, Rapid Prototyping Journal, vol. 26, no. 3, pp.473-483, 2019. https://doi.org/10.1108/RPJ-04-2019-0110.
DOI: 10.1108/rpj-04-2019-0110
Google Scholar
[64]
R. Banerjee, P. C. Collins, A. Genç, and H. L. Fraser, Direct laser deposition of in situ Ti–6Al–4V–TiB composites,, Materials Science and Engineering: A, vol. 358, no. 1-2, pp.343-349, 2003. https://doi.org/10.1016/S0921-5093(03)00299-5.
DOI: 10.1016/s0921-5093(03)00299-5
Google Scholar
[65]
D. Ding, Z. Pan, S. van Duin, H. Li, and C. Shen, Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing,, Materials (Basel), vol. 9, no. 8, Aug 3 2016. https://doi.org/10.3390/ma9080652.
DOI: 10.3390/ma9080652
Google Scholar
[66]
K. Arntz, M. Wegener, and Y. Liu, Computer aided manufacturing supported process planning of additive manufacturing by laser deposition welding,, Journal of Laser Applications, vol. 27, no. S1, p. S14002, 2015. https://doi.org/10.2351/1.4823748.
DOI: 10.2351/1.4823748
Google Scholar
[67]
X. Wang, X. Gong, and K. Chou, Scanning Speed Effect on Mechanical Properties of Ti-6Al-4V Alloy Processed by Electron Beam Additive Manufacturing,, Procedia Manufacturing, vol. 1, pp.287-295, 2015. https://doi.org/10.1016/j.promfg.2015.09.026.
DOI: 10.1016/j.promfg.2015.09.026
Google Scholar
[68]
Q. Ye, M. Al-Shalash, C. Caramanis, and J. G. Andrews, Distributed resource allocation in device-to-device enhanced cellular networks,, IEEE Transactions on Communications, vol. 63, no. 2, pp.441-454, 2015. https://doi.org/10.1109/TCOMM.2014.2386874.
DOI: 10.1109/tcomm.2014.2386874
Google Scholar
[69]
S. Jianfang, L. Zhongchun, Study of numerical simulation method modelling gas injection into fractured reservoirs,, Mining of Mineral Deposits, vol. 13, no. 2, pp.41-45. https://doi.org/10.33271/mining13.02.041.
DOI: 10.33271/mining13.02.041
Google Scholar
[70]
M. J. Heiden et al., Evolution of 316L stainless steel feedstock due to laser powder bed fusion process,, Additive Manufacturing, vol. 25, pp.84-103, 2019. https://doi.org/10.1016/j.addma.2018.10.019.
DOI: 10.1016/j.addma.2018.10.019
Google Scholar
[71]
N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting,, Progress in Materials Science, vol. 106, p.100578, 2019. https://doi.org/10.1016/j.pmatsci.2019.100578.
DOI: 10.1016/j.pmatsci.2019.100578
Google Scholar
[72]
M. Revilla-León, L. Ceballos, I. Martínez-Klemm, and M. Özcan, Discrepancy of complete-arch titanium frameworks manufactured using selective laser melting and electron beam melting additive manufacturing technologies,, The Journal of prosthetic dentistry, vol. 120, no. 6, pp.942-947, 2018. https://doi.org/10.1016/j.prosdent.2018.02.010.
DOI: 10.1016/j.prosdent.2018.02.010
Google Scholar
[73]
F. Fina, A. Goyanes, S. Gaisford, and A. W. Basit, Selective laser sintering (SLS) 3D printing of medicines,, International journal of pharmaceutics, vol. 529, no. 1-2, pp.285-293, 2017. https://doi.org/10.1016/j.ijpharm.2017.06.082.
DOI: 10.1016/j.ijpharm.2017.06.082
Google Scholar
[74]
S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria, Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs,, Journal of Orthopaedic Research, vol. 34, no. 3, pp.369-385, 2016. https://doi.org/10.1002/jor.23075.
DOI: 10.1002/jor.23075
Google Scholar
[75]
H. Bikas, A. Lianos, and P. Stavropoulos, A design framework for additive manufacturing,, The International Journal of Advanced Manufacturing Technology, vol. 103, no. 9-12, pp.3769-3783, 2019. https://doi.org/10.1007/s00170-019-03627-z.
DOI: 10.1007/s00170-019-03627-z
Google Scholar
[76]
A. Awad, S. J. Trenfield, A. Goyanes, S. Gaisford, and A. W. Basit, Reshaping drug development using 3D printing,, Drug discovery today, vol. 23, no. 8, pp.1547-1555, 2018. https://doi.org/10.1016/j.drudis.2018.05.025.
DOI: 10.1016/j.drudis.2018.05.025
Google Scholar
[77]
R. Velu, F. Raspall, and S. Singamneni, 3D printing technologies and composite materials for structural applications,, in Green Composites for Automotive Applications: Elsevier, 2019, pp.171-196. https://doi.org/10.1016/B978-0-08-102177-4.00008-2.
DOI: 10.1016/b978-0-08-102177-4.00008-2
Google Scholar
[78]
T. G. Spears and S. A. Gold, In-process sensing in selective laser melting (SLM) additive manufacturing,, Integrating Materials and Manufacturing Innovation, vol. 5, no. 1, pp.16-40, 2016. https://doi.org/10.1186/s40192-016-0045-4.
DOI: 10.1186/s40192-016-0045-4
Google Scholar
[79]
D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. P. Ambrosio, and E. Atzeni, From Powders to Dense Metal Parts: Characterisation of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering,, Materials (Basel), vol. 6, no. 3, pp.856-869, Mar 6 2013. https://doi.org/10.3390/ma6030856.
DOI: 10.3390/ma6030856
Google Scholar
[80]
C. Körner, Additive manufacturing of metallic components by selective electron beam melting a review,, International Materials Reviews, vol. 61, no. 5, pp.361-377, 2016. https://doi.org/10.1080/09506608.2016.1176289.
DOI: 10.1080/09506608.2016.1176289
Google Scholar
[81]
J. P. Laverty, D. Wood, and J. Turchek, Software Defined Networking (SDN) Network Virtualization for the IS Curriculum?,, in Proceedings of the Information Systems Educators Conference ISSN, 2014, vol. 2167, p.1435: Citeseer.
Google Scholar