Data Analysis of the Effect of Onion, Glycine and Cassava Additives on the Coating Performance of Zn Electrodeposition on Plain Carbon Steel

Article Preview

Abstract:

Data analysis of the coating performance of Zn electrodeposited plain carbon steel in 0.5 M HCl solution at specific volume addition (5 ml, 10 ml and 15 ml) of onion, glycine and cassava (ON, GY and CS) distillate additives, and at plating time of 15 and 18 mins with respect to 538 h of observation time was performed. Analytical outputs showed ON distillate most effectively improved the Zn electrodeposited by 14% at 10 ml volume and plating time of 15 mins. GY and CS distillate generally improved the Zn electrodeposited at all volumes and plating time with optimal values of 42.7% and 45.7% at 15 ml and plating times of 15 and 18 mins. Generally, coating performance varied significantly with observation time, but marginally with plating time and additive volume. The standard deviation values for onion additive showed significant variation from mean values due to relative thermodynamic instability of it coating performance with respect to observation time. This contrast the output observed for GY and CS additives which signifies thermodynamic equilibrium. The proportion of coating performance data above 10% improvement for the additives are (ON, GY and CS) are 32%, 85% and 78% at margin of error of 11.8%, 9.04% and 10.42%. Analysis of variance showed ON and GY additive volume only, influenced the coating performance output of the additives at 64.56% and 74.67% while CS additive volume and observation time influenced the coating performance output of CS at values of 91.18% and 3.27%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1046)

Pages:

133-141

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Elmsellem, H. Nacer, F. Halaimia, A. Aouniti, I. Lakehal, A. Chetouani, S.S. Al-Deyab, R. Warad, R. Touzani, B. Hammouti, Anti-corrosive Properties and Quantum Chemical Study of (E)-4-Methoxy-N-(Methoxybenzylidene) Aniline and (E)-N-(4-Methoxybenzylidene)-4-Nitroaniline Coating on Mild Steel in Molar Hydrochloric, Int. J. Elect. Sci. 9 (2014) 5328-5351.

Google Scholar

[2] R.T. Loto, Study of the corrosion behaviour of S32101 duplex and 410 martensitic stainless steel for application in oil refinery distillation systems, J. Mater. Res. Techn. 6(3) (2017) 203–212. https://doi.org/10.1016/j.jmrt.2016.11.001.

DOI: 10.1016/j.jmrt.2016.11.001

Google Scholar

[3] The effects and economic impact of corrosion, Corrosion: Understanding the basics, ASM International, 2000. https://www.asminternational.org/documents/10192/1849770/06691G_Chapter_1.pdf.

Google Scholar

[4] G. Palanisamy, Corrosion Inhibitors, IntechOpen, (2019). http://doi.org/10.5772/intechopen. 80542.

Google Scholar

[5] V.S. Sastri, Consequences of corrosion, In Challenges in corrosion, John Wiley & Sons, Inc. Hoboken, NJ., 2015. https://doi.org/10.1002/9781119069638.ch5.

Google Scholar

[6] K. Ahmad, Types of corrosion: Materials and Environments, in Principles of Corrosion Engineering and Corrosion Control, 1st Ed., Butterworth-Heinemann, 2006, pp.120-270.

DOI: 10.1016/b978-075065924-6/50005-2

Google Scholar

[7] H. Elmsellem, T. Harit, A. Aouniti, F. Malek, A. Riahi, A. Chetouani, B. Hammouti, Adsorption properties and inhibition of mild steel corrosion in 1 M HCl solution by some bipyrazolic derivatives: Experimental and theoretical investigations, Prot. Met. Phys. Chem. Surf. 51 (2015) 873-884.

DOI: 10.1134/s207020511505007x

Google Scholar

[8] F. Basile, P. Benito, G. Fornasari, M. Monti, E. Scavetta, A. Vaccari, D. Tonelli, A novel electrochemical route for the catalytic coating of metallic supports, Stud. Surf. Sci. Catal. 175 (2010) 51-58.

DOI: 10.1016/s0167-2991(10)75007-2

Google Scholar

[9] M.P. O'Connor, R.M. Coulthard, D.L. Plata, Electrochemical deposition for the separation and recovery of metals using carbon nanotube-enabled filters, Environ. Sci. Water Res. Technol. 4 (2018) 58-66.

DOI: 10.1039/c7ew00187h

Google Scholar

[10] L.P. Bicelli, B. Bozzini, C. Mele, L. D'Urzo, A review of nanostructural aspects of metal electrodeposition, Int. J. Elect. Sci. 3 (2008) 356 – 408.

Google Scholar

[11] A.W. Peabody, Control of pipeline corrosion, 2nd Ed., NACE International: The Corrosion Society, Houston, Texas, (2001).

Google Scholar

[12] A.S.M. Makhlouf, Current and advanced coating technologies for industrial applications, In book: Nanocoatings and ultra-thin-films: Technologies and applications, Woodhead Publishing Limited, Cambridge, UK, 2011. http://doi.org/10.1533/9780857094902.1.3.

DOI: 10.1533/9780857094902.1.3

Google Scholar

[13] S. Attabi, M. Mokhtari, Y. Taibi, I. Abdel-Rahman, B. Hafez, H. Elmsellem, Electrochemical and tribological behavior of surface-treated titanium alloy Ti-6Al-4V. J. Bio Tribo Corros. 5(2) (2019. https://doi.org/10.1007/s40735-018-0193-5.

DOI: 10.1007/s40735-018-0193-5

Google Scholar

[14] L. Yuan, Z. Ding, S. Liu, W. Shu, Y. He, Effects of additives on zinc electrodeposition from alkaline zincate solution, Trans. Nonferrous Met. Soc. China, 27(7) (2017) 1656–1664.

DOI: 10.1016/s1003-6326(17)60188-2

Google Scholar

[15] J.B. Bajat, V.B. Mišković-Stanković, M.D. Maksimović, D.M. Dražić, S. Zec, Electrochemical deposition and characterization of Zn-Fe alloys, J. Serbian Chem. Soc. 69(10) (2004) 807–815.

DOI: 10.2298/jsc0410807b

Google Scholar

[16] F.G. Hone, T. Abza, Short review of factors affecting chemical bath deposition method for metal chalcogenide thin films, International Journal of Thin Films Science and Technology, 8(2) (2019) 43-52. http://dx.doi.org/10.18576/ijtfst/080203.

Google Scholar

[17] N.M. Pereira, C.M. Pereira, J.P. Araújo, A.P. Silva, Zinc electrodeposition from deep eutectic solvent containing organic additives, J. Electroanal. Chem. 801 (2017) 545–551.

DOI: 10.1016/j.jelechem.2017.08.019

Google Scholar

[18] A.P. Abbott, J.C. Barron, G. Frisch, K.S. Ryder, A.F. Silva, The effect of additives on zinc electrodeposition from deep eutectic solvents, Electrochim. Acta, 56(14) (2011) 5272–5279.

DOI: 10.1016/j.electacta.2011.02.095

Google Scholar

[19] Feng, L., Sun, X., Yao, S., Liu, C., Xing, W., & Zhang, J. (2014). Electrocatalysts and catalyst layers for oxygen reduction reaction, In Rotating electrode methods and oxygen reduction electrocatalysts, Elsevier B.V., Amsterdam, Vol. 175, pp.67-132. https://doi.org/10.1016/B978-0-444-63278-4.00003-3.

DOI: 10.1016/b978-0-444-63278-4.00003-3

Google Scholar

[20] N. Sorour, W. Zhang, E. Ghali, G. Houlachi, A review of organic additives in zinc electrodeposition process (performance and evaluation), Hydrometallurgy, 171 (2017) 320–332.

DOI: 10.1016/j.hydromet.2017.06.004

Google Scholar

[21] B. Kavitha, P. Santhosh, M. Renukadevi, A. Kalpana, P. Shakkthivel, T. Vasudevan, Role of organic additives on zinc plating, Surf. Coat. Technol. 201(6) (2006) 3438–3442.

DOI: 10.1016/j.surfcoat.2006.07.235

Google Scholar

[22] H. Elmsellem, Y. El Ouadi, M. Mokhtari, H. Bendaif, H. Steli, A. Aouniti, A.M. Almehdi, I. Abdel-Rahman, H.S. Kusuma, B. Hammouti, A natural antioxidant and an environmentally friendly inhibitor of mild steel corrosion: A commercial oil of basil (ocimum basilicum l.), J. Univ. Chem. Technol. Metallurgy 4 (2019)742-749.

Google Scholar

[23] R.T. Loto, Surface coverage and corrosion inhibition effect of rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions, Results in Phys. 8 (2018) 172-179.

DOI: 10.1016/j.rinp.2017.12.003

Google Scholar

[24] B. Hafez, M. Mokhtarі, H. Elmsellem, H. Steli, Environmentally friendly inhibitor of the corrosion of mild steel: Commercial oil of eucalyptus, Int. J. Corros. Scale Inhib.8(3)(2019) 573-585.

DOI: 10.17675/2305-6894-2019-8-3-8

Google Scholar

[25] C.A. Loto, A. Olofinjana, R.T. Loto, Effect of manihot esculenta c. leaf extract additive on the zinc electroplating on mild steel in acid chloride solution. Int. J. Elect. Sci. 9 (2014) 3746 – 3759.

Google Scholar