[1]
V.N. Shinkin, Residual stresses in elastoplastic bending of round bar, Materials Science Forum 946 (2019) 862-867.
DOI: 10.4028/www.scientific.net/msf.946.862
Google Scholar
[2]
V.N. Shinkin, Tubes' rupture at the faulty fusion of welding seam, Materials Science Forum 946 (2019) 868-873.
DOI: 10.4028/www.scientific.net/msf.946.868
Google Scholar
[3]
V.N. Shinkin, Residual stresses of a round steel rod at the elastoplastic twisting, Materials Science Forum 989 (2020) 642-646.
DOI: 10.4028/www.scientific.net/msf.989.642
Google Scholar
[4]
J. Bauschinger, Die veranderungen die elastizitatsgrenze, Mittheilungen aus dem Mechanisch-Technischen Laboratorium der Koniglichen Technischen Hochschule in Munchen 13(5) (1886) 1-31.
DOI: 10.1007/bf02578721
Google Scholar
[5]
V.V. Moskvitin, Plasticity under Variable Loads, Moscow, (1965).
Google Scholar
[6]
I.A. Birger, Residual Stresses, Moscow, (2015).
Google Scholar
[7]
Ju.N. Rabotnov, Mechanics of Deformable Solid, Moscow, (2019).
Google Scholar
[8]
U. Muhin, S. Belskij, E. Makarov, T. Koynov, Simulation of accelerated strip cooling on the hot rolling mill run-out roller table, Frattura ed Integrita Strutturale. 10(37) (2016) 305-311.
DOI: 10.3221/igf-esis.37.40
Google Scholar
[9]
Bel¢skii S.M., Mukhin Y.A., Classification of regulation principles for strip flatness, Steel in Translation. 39(11) (2009) 1012-1015.
DOI: 10.3103/s0967091209110114
Google Scholar
[10]
S.M. Bel¢skii, Y.A. Mukhin, Hot strip rolling with local thickening, Steel in Translation. 39(5) (2009) 420-424.
DOI: 10.3103/s0967091209050143
Google Scholar
[11]
V.N. Shinkin, Springback coefficient of a round steel beam under elastoplastic torsion, CIS Iron and Steel Review. 15 (2018) 23-27.
DOI: 10.17580/cisisr.2018.01.05
Google Scholar
[12]
V.N. Shinkin, Simple analytical dependence of elastic modulus on high temperatures for some steels and alloys, CIS Iron and Steel Review. 15 (2018) 32-38.
DOI: 10.17580/cisisr.2018.01.07
Google Scholar
[13]
I.V. Ushakov, Method of mechanical testing of laser treated metallic glass by indenters with different geometry, Proceedings of SPIE - The International Society for Optical Engineering. 6597 (2007) 659714.
DOI: 10.1117/12.726773
Google Scholar
[14]
I.V. Ushakov, Yu.V. Simonov, Formation of surface properties of VT18u titanium alloy by laser pulse treatment, Materials Today: Proceedings. 19(5) (2019) 2051-2055.
DOI: 10.1016/j.matpr.2019.07.072
Google Scholar
[15]
I.V. Ushakov, V.A. Feodorov, I.J. Permyakova, Mechanical characteristics and crystallization of annealed metallic glass 82K3XCP, Proceedings of SPIE - The International Society for Optical Engineering. 5400 (2004) 261-264.
DOI: 10.1117/12.555528
Google Scholar
[16]
V.N. Skorokhodov, P.P. Chernov, Yu.A. Mukhin, S.M. Bel¢skij, Mathematical model of the process of free spreading during strip rolling, Stal¢. 3 (2001) 38-40.
Google Scholar
[17]
S.M. Bel¢skii, V.A. Tret¢yakov, V.V. Baryshev, S.V. Kudinov, Investigation of slab width formation in roughing group of broad strip mill, Steel in Translation. 28(1) (1998) 32-39.
Google Scholar
[18]
A.V. Kazak, M.A. Marchenkova, T.V. Dubinina, A.I. Smirnova, L.G. Tomilova, A.V. Rogachev, D.N. Chausov, A.A. Stsiapanau, N.V. Usol¢tseva, Self-organization of octa-phenyl-2,3-naphthalocyaninato zinc floating layers, New Journal of Chemistry. 44 (2020) 3833-3837.
DOI: 10.1039/c9nj06041c
Google Scholar
[19]
E.N. Vasilchikova, M.S. Konstantinov, V.I. Mashchenko, R.N. Kucherov, D.N. Chausov, A.K. Dadivanyan, Specific features of crystallization process of 4,4¢-azoxyanisole in the form of multiple coffee rings,, Liquid Crystals and Their Application. 20(1) (2020) 47-52.
DOI: 10.18083/lcappl.2020.1.47
Google Scholar
[20]
V.N. Shinkin, Elastoplastic flexure of round steel beams. 1. Springback coefficient, Steel in Translation. 48(3) (2018) 149-153.
DOI: 10.3103/s0967091218030117
Google Scholar
[21]
V.N. Shinkin, Elastoplastic flexure of round steel beams. 2. Residual stress, Steel in Translation. 48(11) (2018) 718-723.
DOI: 10.3103/s0967091218110098
Google Scholar
[22]
I.V. Ushakov, How a crack and the defect material in its neighborhood affect the radiation strength of transparent materials, Journal of Optical Technology 75(2) (2008) 128-131.
DOI: 10.1364/jot.75.000128
Google Scholar
[23]
I. Safronov, A. Ushakov, Effect of simultaneous improvement of plasticity and microhardness of an amorphous-nanocrystalline material based on Co, as a result of laser processing of nanosecond duration, Materials Today: Proceedings 38(4) (2021) 1516-1520.
DOI: 10.1016/j.matpr.2020.08.141
Google Scholar
[24]
V.N. Shinkin, Preliminary straightening of steel strip, Chernye Metally. 5 (2018) 34-40.
Google Scholar
[25]
V.N. Shinkin, Direct and inverse non-linear approximation of hardening zone of steel, Chernye Metally. 3 (2019) 32-37.
Google Scholar
[26]
D.N. Chausov, A.D. Kurilov, V.V. Belyaev, Liquid crystal nanocomposites doped with rare earth elements, Liquid Crystals and Their Application. 20(2) (2020) 6-22.
DOI: 10.18083/lcappl.2020.2.6
Google Scholar
[27]
V.V. Osipova, A.D. Kurilov, Y.G. Galyametdinov, A.A. Muravsky, S. Kumar, D.N. Chausov, Optical properties of nematic liquid crystal composites with semiconducting quantum dots, Liquid Crystals and Their Application. 20(4) (2020) 84-92.
DOI: 10.18083/lcappl.2020.4.84
Google Scholar
[28]
J. Hu, Z. Marciniak, J. Duncan, Mechanics of Sheet Metal Forming, Butterworth-Heinemann, (2002).
Google Scholar