The Optimization of Sc Recovery from Red Mud Obtained by Water-Leaching of Bauxite-Sintering Product

Article Preview

Abstract:

This study continues and develops approaching of bauxite residue treatment and associated waste for extracting highly valuable metals and scandium recovery by optimizing a hydrometallurgy method for process intensification. Laboratory-scale experiments were conducted in a nitric acid medium on electrostatic precipitator dust (ESPD) received in bauxite sintering. The method includes prior water-leaching of ESPD and subsequent asid leaching experiments at different liquid-to-solid ratios, leaching times and temperatures. The maximum extraction of the scandium was around 76.5 % at pH=0.2. Experimental design based on response surface methodology was used for obtained values optimization. Researches have shown that the optimization of the conditions for the transfer of scandium from red mud to the leaching solution mainly depends on the pH that have to be adjusted in range 0.5-1.7. The pH should not be too low, since Sc does not have time to go into solution in the presence of iron and other elements, as well as too high, because high values lead to re-precipitation of Sc from the filtrate. Complete study for Sc recovery is under progress and is not elaborated here.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1052)

Pages:

436-441

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Tsesmelis, Bauxite mine rehabilitation and bauxite residue management: A global perspective, in: Proceedings of 35th International ICSOBA Conference, Hamburg, Germany, 2017, pp.71-72.

Google Scholar

[2] I.V. Loginova, A.A. Shoppert, L.I. Chaikin, Effect of adding sintering furnace electrostatic precipitator dust on combined leaching of bauxites and cakes, Metallurgist. 59 (2015) 698-704.

DOI: 10.1007/s11015-015-0161-y

Google Scholar

[3] L. Chaikin, A. Shoppert, D. Valeev, I.V. Loginova and J.A. Napol'skikh, Concentration of rare earth elements (Sc, Y, La, Ce, Nd, Sm) in bauxite residue (red mud) obtained by water and alkali leaching of bauxite sintering dust, Minerals. 10(6) (2020) 500.

DOI: 10.3390/min10060500

Google Scholar

[4] A. A. Shoppert, I.V. Loginova, J.A. Napol'skikh, Obtaining of pigment-quality magnetite from sintering process red mud, IOP Conf. Ser.: Mater. Sci. Eng. 969 (2020) 012056.

DOI: 10.1088/1757-899x/969/1/012056

Google Scholar

[5] P. Davris, E. Balomenos, D. Panias and I. Paspaliaris, Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid, Hydrometallurgy. 164 (2016) 125-135.

DOI: 10.1016/j.hydromet.2016.06.012

Google Scholar

[6] S. Reid, J. Tam, M. Yang and G. Azimi, Technospheric mining of rare earth elements from bauxite residue (red mud): process optimization, kinetic investigation, and microwave pretreatment, Sci. Rep. 7 (2017) 15252.

DOI: 10.1038/s41598-017-15457-8

Google Scholar

[7] Y. Qu, B. Lian, Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10, Biores. Technol. 136 (2016) 16-23.

DOI: 10.1016/j.biortech.2013.03.070

Google Scholar

[8] Abhilash, S. Sinha, M.K. Sinha and B.D. Pandey, Extraction of lanthanum and cerium from Indian red mud, Int. J. Miner. Process. 127 (2014) 70-73.

DOI: 10.1016/j.minpro.2014.06.002

Google Scholar

[9] E. Balomenos, P. Davris, Y. Pontikes and D. Panias, Mud2Metal: Lessons learned on the path for complete utilization of bauxite residue through industrial symbiosis, J. Sustain. Metall. 3 (2017) 551-560.

DOI: 10.1007/s40831-016-0110-4

Google Scholar

[10] K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven and Y. Pontikes, Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review, J. Clean. Prod. 99 (2015) 17-38.

DOI: 10.1016/j.jclepro.2015.02.089

Google Scholar

[11] C.R. Borra, B. Blanpain, Y. Pontikes, K. Binnemans and T. Van Gerven, Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review, J. Sustain. Metall. 2 (2016) 365-386.

DOI: 10.1007/s40831-016-0068-2

Google Scholar

[12] A. B. Botelho Junior, R. H. Costa, D.C.R. Espinosa and J.A.S. Tenório, Recovery of scandium by leaching process from brazilian red mud, Rare Metal Technology. 1 (2019) 73-79.

DOI: 10.1007/978-3-030-05740-4_8

Google Scholar

[13] C.R. Borra, Y. Pontikes, K. Binnemans and T. Van Gerven, Leaching of rare earths from bauxite residue (red mud), Miner. Eng. 76 (2015) 20-27.

DOI: 10.1016/j.mineng.2015.01.005

Google Scholar

[14] Z. Wang, X. Lin, Y. Tang, N. Kang, X. Gao, S. Shi and W. Huang, Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior, J. Mater. Sci. Technol. 69 (2021) 168-179.

DOI: 10.1016/j.jmst.2020.08.003

Google Scholar

[15] Y. Zhang, H. Zhao, M. Sun, Y. Zhang, X. Meng, L. Zhang, X. Lv, S. Davaasambuu and G. Qiu, Scandium extraction from silicates by hydrometallurgical process at normal pressure and temperature, J. Mater. Res. Technol. 9 (2020) 709-717.

DOI: 10.1016/j.jmrt.2019.11.012

Google Scholar

[16] S.-C. Li, S.-C. Kim and C.-S. Kang, Recovery of scandium from KOH sub-molten salt leaching cake of fergusonite, Miner. Eng. 137 (2019) 200-206.

DOI: 10.1016/j.mineng.2018.11.052

Google Scholar

[17] S. Das, S. S. Behera, B. M. Murmu, R. K. Mohapatra, D. Mandal, R. Samantray, P. K. Parhi and G. Senanayake, Extraction of scandium(III) from acidic solutions using organo-phosphoric acid reagents: a comparative study, Sep. Purif. Technol. 202 (2018) 248-258.

DOI: 10.1016/j.seppur.2018.03.023

Google Scholar

[18] W. Zhang, S. Yu, S. Zhang, J. Zhou, S. Ning, X. Wang, Y. Wie, Separation of scandium from the other rare earth elements with a novel macro-porous silica-polymer based adsorbent HDEHP/SiO2-P, Hydrometallurgy. 185 (2019) 117-124.

DOI: 10.1016/j.hydromet.2019.01.012

Google Scholar

[19] R. M. Ormerod, Solid oxide fuel cells, Chem. Soc. Rev. 32 (2003) 17-28.

Google Scholar

[20] M. Ochsenkuehn–Petropoulou, L.-A. Tsakanika, T. Lymperopoulou, K.-M. Ochsenkuehn, K. Hatzilyberis, P. Georgiou, C. Stergiopoulos, O. Serifi, F. Tsopelas, Efficiency of sulfuric acid on selective scandium leachability from bauxite residue, Metals. 8 (2018) 915.

DOI: 10.3390/met8110915

Google Scholar

[21] K. Hatzilyberis, L.-A. Tsakanika, T. Lymperopoulou, P. Georgiou, K. Kiskira, F. Tsopelas, K.-M. Ochsenkühn, M. Ochsenkühn-Petropoulou, Design of an advanced hydrometallurgy process for the intensified and optimized industrial recovery of scandium from bauxite residue, Chem Eng Process. 155 (2020) 108015.

DOI: 10.1016/j.cep.2020.108015

Google Scholar

[22] W.W. Wang, Y. Pranolo, C.Y. Cheng, Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA, Sep. Purif. Technol. 108 (2013) 96-102.

DOI: 10.1016/j.seppur.2013.02.001

Google Scholar

[23] M. Ochsenkuehn-Petropoulou, T. Lymperopoulou, L.A. Tsakanika, K.M. Ochsenkuehn, K. Hatzilyberis, P. Georgiou, C. Stergiopoulos and F. Tsopelas, Mineral acid leaching of scandium from bauxite residue, in: Proceedings of the 2nd International Bauxite Residue Valorization and Best Practices Conference (BR2018), 2018, pp.373-379.

DOI: 10.20944/preprints201810.0063.v1

Google Scholar