Influence of Environment at Laser Processing on Microhardness of Amorphous-Nanocrystalline Metal Alloy

Article Preview

Abstract:

Amorphous metal alloys have unique properties and are widely used. The unique properties of such materials are accompanied by problems of mechanical strength. The existing methods of their processing are not unambiguous and require a certain approach. In practice, laser technologies allow us to optimize the complex properties of such materials. The selection of optimal processing modes, including the influence of the gas phase, allows you to locally affect the material, increase the microhardness in certain areas. The absence of the influence of the processing medium on the mechanical properties is confirmed. Local impact on the surface sample also leads to an increase in crack resistance. In general, nanosecond laser exposure can be an effective tool for controlling the mechanical characteristics of an amorphous nanocrystalline material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1052)

Pages:

50-55

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Cavaliere, Fatigue and Fracture of Nanostructured Materials, Springer, (2021).

Google Scholar

[2] C.C. Koch, Nanostructured Materials: Processing, Properties and Applications, Elsevier Science, (2006).

Google Scholar

[3] G. Abrosimova, A. Aronin, Amorphous and nanocrystalline metallic alloys, Progress in Metallic Alloys. (2016) 45-83.

DOI: 10.5772/64499

Google Scholar

[4] V.N. Shinkin, Springback coefficient of round steel beam under elastoplastic torsion, CIS Iron and Steel Review. 15 (2018) 23-27.

DOI: 10.17580/cisisr.2018.01.05

Google Scholar

[5] V.N. Shinkin, Simple analytical dependence of elastic modulus on high temperatures for some steels and alloys, CIS Iron and Steel Review. 15 (2018) 32-38.

DOI: 10.17580/cisisr.2018.01.07

Google Scholar

[6] N.V. Priezjev, The effect of thermal history on the atomic structure and mechanical properties of amorphous alloys, Computational Materials Science. 174 (2020) 109477.

DOI: 10.1016/j.commatsci.2019.109477

Google Scholar

[7] V.N. Shinkin, Preliminary straightening of steel strip, Chernye Metally. 5 (2018) 34-40.

Google Scholar

[8] V.N. Shinkin, Direct and inverse non-linear approximation of hardening zone of steel, Chernye Metally. 3 (2019) 32-37.

Google Scholar

[9] I.V. Ushakov, V.A. Feodorov, I.J. Permyakova, Mechanical characteristics and crystallization of annealed metallic glass 82K3XCP, Proceedings of SPIE – The International Society for Optical Engineering. 5400 (2004) 261-264.

DOI: 10.1117/12.555528

Google Scholar

[10] V.N. Shinkin, Elastoplastic flexure of round steel beams. 1. Springback coefficient, Steel in Translation. 48(3) (2018) 149-153.

DOI: 10.3103/s0967091218030117

Google Scholar

[11] V.N. Shinkin, Elastoplastic flexure of round steel beams. 2. Residual stress, Steel in Translation. 48(11) (2018) 718-723.

DOI: 10.3103/s0967091218110098

Google Scholar

[12] H. Gleiter, Nanocrystalline materials, Progress in Materials Science. 33 (1989) 223-315.

Google Scholar

[13] I. Pestriak, V. Morozov, E. Otchir, Modelling and development of recycled water conditioning of copper-molybdenum ores processing, International Journal of Mining Science and Technology. 29(2) (2019) 313-317.

DOI: 10.1016/j.ijmst.2018.11.028

Google Scholar

[14] I.V. Pestryak, Modeling and analysis of physicochemical processes in recirculating water conditioning, Journal of Mining Science. 51(4) (2015) 811-818.

DOI: 10.1134/s1062739115040189

Google Scholar

[15] I.V. Pestryak, O. Erdenetuyaa, V.V. Morozov, Return water improvement at erdenet mining complex, Obogashchenie Rud. 2 (2013) 3-8.

Google Scholar

[16] I. Loginova, A. Khalil, A. Pozdniakov, A. Solonin, V. Zolotorevskiy, Effect of pulse laser welding parameters and filler metal on microstructure and mechanical properties of Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr alloy, Metals. 7(12) (2017) 564.

DOI: 10.3390/met7120564

Google Scholar

[17] I.V. Ushakov, Yu.V. Simonov, Formation of surface properties of VT18u titanium alloy by laser pulse treatment, Materials Today: Proceedings. 19(5) (2019) 2051-2055.

DOI: 10.1016/j.matpr.2019.07.072

Google Scholar

[18] I. Safronov, A. Ushakov, Effect of simultaneous improvement of plasticity and microhardness of an amorphous-nanocrystalline material based on Co, as a result of laser processing of nanosecond duration, Materials Today: Proceedings. 38(4) (2021) 1516-1520.

DOI: 10.1016/j.matpr.2020.08.141

Google Scholar

[19] J. Bonse, et al., Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications, Applied Physics A: Materials Science and Processing. 117 (2014) 103-110.

DOI: 10.1007/s00339-014-8229-2

Google Scholar

[20] I.V. Ushakov, Method of mechanical testing of laser treated metallic glass by indenters with different geometry, Proceedings of SPIE - The International Society for Optical Engineering. 6597 (2007) 181-185.

DOI: 10.1117/12.726773

Google Scholar

[21] Z. Jia, P. Zhang, Z. Yu, et al., Effect of pulse shaping on solidification process and crack in 5083 aluminum alloy by pulsed laser welding, Optics and Laser Technology. 134 (2020) 106608.

DOI: 10.1016/j.optlastec.2020.106608

Google Scholar

[22] I.V. Ushakov, How a crack and the defect material in its neighborhood affect the radiation strength of transparent materials, Journal of Optical Technology. 75(2) (2008) 128-131.

DOI: 10.1364/jot.75.000128

Google Scholar

[23] K. Tserpesa, P. Baziosa, S. Pantelakisa, N. Michailidisb, Nanoindentation testing and simulation of nanocrystalline materials, Procedia Structural Integrity. 28 (2020) 1644-1649.

DOI: 10.1016/j.prostr.2020.10.136

Google Scholar

[24] I. Peshko, Laser Pulses: Theory, Technology and Applications, InTech, (2016).

Google Scholar

[25] M. Philbert, M. Billard, G. Fertin, J. Lefevre, Thermal blooming of high power laser beams, Journal de Physique Colloques. 41(9) (1980) 149-154.

DOI: 10.1051/jphyscol:1980920

Google Scholar

[26] Kh. Bazzal, V.V. Lychkovskii , A.P. Zajogin ,  Processes of forming of aluminum nitride in plasma by action of defocused doble laser beams upon aluminum in air atmosphere, Journal of the Belarusian State University: Physics. 3 (2018) 81- 90.

Google Scholar

[27] T. Wang, J. Pu, Z. Chen, Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere, Optics Communications. 282(7) (2009) 1255-1259.

DOI: 10.1016/j.optcom.2008.12.027

Google Scholar

[28] V.I. Emel¢yanov, I.F. Uvarova, Nonlinear-optical deformation of an acoustic subsystem and the superfast smoothing of semiconductor surfaces by short laser pulses, Bulletin of the Academy of Sciences of the U.S.S.R. Physical Series. 50(6) (1985) 164-169.

Google Scholar

[29] V.I. Emel¢yanov, V.S. Makin, I.F. Uvarova, Formation of ordered vacancy-deformation structures on metal surface under laser irradiation, Physics and Chemistry of Materials Treatment. 24(2) (1990) 108-114.

Google Scholar

[30] V.S. Burakov, N.V. Tarasenko, N.A. Savastenko, Plasma chemistry in laser ablation processes, Spectrochimica Acta Part B. 56 (2001) 961-971.

DOI: 10.1016/s0584-8547(01)00192-6

Google Scholar