Mechanical, Thermal and Morphological Properties of Poly(Lactic Acid) and Poly(Butylene Adipate-co-Terephthalate) Blends with Organoclay

Article Preview

Abstract:

This work studied the effect of nanoclay surface modified with 25-30 wt% of methyl dihydroxyethyl hydrogenated tallow ammonium (Clay-DHA) on morphological, mechanical and thermal properties of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) blends. The PLA/PBAT (75/25 w/w) blends without and with Clay-DHA were melt mixed by an internal mixer and molded by compression method. The morphological analysis observed the phase separation of PLA/PBAT blends due to minor PBAT phase dispersed as spherical shape in PLA phase, indicating a poor interfacial adhesion between PLA and PBAT phases. The incorporation of Clay-DHA could improve the compatibility of polymer blends. The tensile testing found that the addition of Clay-DHA 1 and 3 phr increased Young’s modulus of PLA/PBAT blends. The addition of Clay-DHA decreased the strain at break of PLA/PBAT blends. The thermal degradation of PLA/PBAT blends and composites showed the similar thermal degradation process step. The addition of Clay-DHA was no effect on thermal stability and thermal properties of PLA/PBAT blends.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1053)

Pages:

35-40

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.M. Panicker, K.A. Rajesh, and T.O. Varghese: Iran. Polym. J. Vol. 26 (2017), p.125.

Google Scholar

[2] S. Wacharawichanant, P. Hanjai, S. Khongaio, and M. Phankokkruad: Materials Science Forum Vol. 1009 (2020), p.43.

DOI: 10.4028/www.scientific.net/msf.1009.43

Google Scholar

[3] R. Jaratrotkamjorn, C. Khaokong, and V. Tanrattanakul: J. Appl. Polym. Sci. Vol. 124 (2012), p.5027.

Google Scholar

[4] Y. Chen, D. Yuan, and C. Xu: J. ACS Appl. Mater. Interfaces Vol. 6 (2014), p.3811.

Google Scholar

[5] C. Deetuam, C. Samthong, P. Pratumpol, and A Somwangthanaroj: Iran. Polym. J. Vol. 26 (2017), p.615.

DOI: 10.1007/s13726-017-0547-8

Google Scholar

[6] T. Yokohara, and M. Yamaguchi: Eur. Polym. J. Vol. 44 (2008), p.677.

Google Scholar

[7] Y. Deng, and N.L. Thomas: Eur. Polym. J. Vol. 71 (2015), p.534.

Google Scholar

[8] X. Lu, J. Zhao, X. Yang, and P. Xiao: Polym. Test. Vol. 60 (2017), p.58.

Google Scholar

[9] W. Pivsa-Art, A. Chaiyasat, S. Pivsa-Art, H. Yamane, and H. Ohara: Energy Procedia Vol. 34 (2013), p.549.

DOI: 10.1016/j.egypro.2013.06.784

Google Scholar

[10] X. Li1, X. Ai, H. Pan, J. Yang, G. Gao, H. Zhang, H. Yang, and L. Dong: Polym. Adv. Technol. (2018), p.1.

Google Scholar

[11] O. Çoban, M. Özgür Bora, T. Kutluk, and G. Özkoç: Polym. Compos. Vol. 39 (2018), p. E1500.

DOI: 10.1002/pc.24393

Google Scholar

[12] N. Wu, and H. Zhang: Mater. Lett. Vol. 192 (2017), p.17.

Google Scholar

[13] N.T. Kilic, B.N. Can, M. Kodal, and G. Ozkoc: Polym. Eng. Sci. Vol. 60 (2020), p.398.

Google Scholar

[14] C. Xu, X. Zhang, X. Jin, S. Nie, and R. Yang: J. Polym. Environ. Vol.27 (2019), p.1273.

Google Scholar

[15] A.K. Das, S. Suin, N.K. Shrivastava, S.Maiti, J.K. Mishra, and B.B. Khatua: Polym. Compos. Vol. 35 (2014), p.273.

Google Scholar

[16] S.S. Ray, J. Bandyopadhyay, and M. Bousmina: Macromol. Mater. Eng. Vol. 292 (2007), p.729.

Google Scholar

[17] M. Nofar, M.C. Heuzey, P.J. Carreau, and M.R. Kamal: Polymer Vol. 98 (2016), p.353.

Google Scholar

[18] H. He, B. Liu, B. Xue, and H. Zhang: J. Thermoplast. Compos. Mater. (2019), p.1.

Google Scholar