Visible Light Photocatalytic Degradation of Methylene Blue Using Polypyrrole-Coated Molybdenum-Based Magnetic Photocatalyst

Article Preview

Abstract:

In this study, Ppy@MoO3@Fe3O4 photocatalyst was used to degrade methylene blue (MB) under visible light irradiation. The optimum catalyst loading, initial MB dye concentration, and solution pH was found to be 500 ppm, 40 ppm, and pH 5, respectively, and resulted to 94.1% MB dye degradation within 90 min irradiation. The mineralization of MB obtained 93% TOC removal. Pseudo-first order kinetic model governed the degradation of MB having a rate constant of 0.027 min-1. Furthermore, it was demonstrated that h+ and O2 species played a critical role in the visible light photocatalytic degradation of MB. The Ppy@MoO3@Fe3O4 photocatalyst also showed better photocatalytic performance on MB dye degradation compared to MoO3@Fe3O4 and controls. Finally, the Ppy@MoO3@Fe3O4 photocatalyst exhibited consistently high performance even after 4 cycles, proving that the as-prepared nanomaterial can be considered as a promising photocatalyst with good photocatalytic activity, stability, and reusability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1053)

Pages:

397-404

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. B. Azim, I. Arafat, R. Morshed, and R. Tareq, Degradation of Methylene Blue Using Graphene Oxide-Tin Oxide Nanocomposite as Photocatalyst,, in 1st International Conference on Engineering Materials and Metallurgical Engineering, 2016, p.202–209.

Google Scholar

[2] M. Farhan Hanafi and N. Sapawe, A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes,, Mater. Today Proc., vol. 31, no. xxxx, pp. A141–A150, (2020).

DOI: 10.1016/j.matpr.2021.01.258

Google Scholar

[3] D. A. G. Sumalinog, S. C. Capareda, and M. D. G. De Luna, Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes,, J. Environ. Manage., vol. 210, p.255–262, (2018).

DOI: 10.1016/j.jenvman.2018.01.010

Google Scholar

[4] A. Chithambararaj, B. Winston, N. S. Sanjini, S. Velmathi, and A. C. Bose, Band gap tuning of h -MoO3 nanocrystals for efficient visible light photocatalytic activity against methylene blue dye,, J. Nanosci. Nanotechnol., vol. 15, no. 7, p.4913–4919, (2015).

DOI: 10.1166/jnn.2015.9846

Google Scholar

[5] H. Koyuncu and A. R. Kul, Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent,, Appl. Water Sci., vol. 10, no. 2, p.1–14, (2020).

DOI: 10.1007/s13201-020-1156-9

Google Scholar

[6] J. Cheng et al., Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine,, ACS Omega, vol. 5, no. 10, p.5389–5400, (2020).

DOI: 10.1021/acsomega.9b04425

Google Scholar

[7] S. Sharma and A. Kaur, Various methods for removal of dyes from industrial effluents - a review,, Indian J. Sci. Technol., vol. 11, no. 12, p.1–21, (2018).

Google Scholar

[8] V. Katheresan, J. Kansedo, and S. Y. Lau, Efficiency of various recent wastewater dye removal methods: A review,, J. Environ. Chem. Eng., vol. 6, no. 4, p.4676–4697, (2018).

DOI: 10.1016/j.jece.2018.06.060

Google Scholar

[9] S. Dhanavel, E. Nivethaa, V. Narayanan, and A. Stephen, Visible Light Induced Photocatalytic Degradation of Methylene Blue using Polyaniline Modified Molybdenum Trioxide,, Mechanika, vol. 9, no. April, p.1–6, (2017).

Google Scholar

[10] V. Subramanian, V. G. Pangarkar, and A. A. C. M. Beenackers, Photocatalytic degradation of para-hydroxybenzoic acid: Relationship between substrate adsorption and photocatalytic degradation,, Clean Prod. Process., vol. 2, no. 3, p.0149–0156, (2000).

DOI: 10.1007/s100980000080

Google Scholar

[11] D. S. Bhatkhande, V. G. Pangarkar, and A. A. C. M. Beenackers, Photocatalytic degradation for environmental applications – a review,, J. Chem. Technol. Biotechnol., vol. 77, no. April 2001, p.102–106, (2001).

DOI: 10.1002/jctb.532

Google Scholar

[12] A. Chithambararaj, N. S. Sanjini, S. Velmathi, and A. Chandra Bose, Preparation of h-MoO3 and α-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation,, Phys. Chem. Chem. Phys., (2013).

DOI: 10.1039/c3cp51796a

Google Scholar

[13] M. B. R. Kamalam, S. S. R. Inbanathan, and K. Sethuraman, Enhanced photo catalytic activity of graphene oxide /MoO 3 nanocomposites in the degradation of Victoria Blue Dye under visible light irradiation,, Appl. Surf. Sci., vol. 449, p.685–696, (2018).

DOI: 10.1016/j.apsusc.2017.12.099

Google Scholar

[14] Shahab-ud-Din et al., Hydrothermal synthesis of molybdenum trioxide, characterization and photocatalytic activity,, Mater. Res. Bull., vol. 100, no. November 2017, p.120–130, (2018).

DOI: 10.1016/j.materresbull.2017.11.044

Google Scholar

[15] S. K. Fanourakis, J. Peña-Bahamonde, P. C. Bandara, and D. F. Rodrigues, Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse,, npj Clean Water, vol. 3, no. 1, p.1, Jan. (2020).

DOI: 10.1038/s41545-019-0048-8

Google Scholar

[16] M. Nikazar, M. Alizadeh, R. Lalavi, and M. H. Rostami, The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol,, J. Environ. Heal. Sci. Eng., vol. 12, no. 1, p.1–6, (2014).

DOI: 10.1186/2052-336x-12-21

Google Scholar

[17] K. Mondal and A. Sharma, Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process,, RSC Adv., vol. 6, no. 87, p.83589–83612, (2016).

DOI: 10.1039/c6ra18102c

Google Scholar

[18] M. Navgire, A. Nagare, G. Kale, and S. Bhitre, Synthesis, Characterization and applications of MoO3-Fe3O4 Nanocomposite Material,, J. Met. Mater. Res., vol. 02, no. 02, p.15–20, (2019).

DOI: 10.30564/jmmr.v2i2.1124

Google Scholar

[19] S. K. Misra, A. Dybowska, D. Berhanu, S. N. Luoma, and E. Valsami-Jones, The complexity of nanoparticle dissolution and its importance in nanotoxicological studies,, Sci. Total Environ., vol. 438, p.225–232, (2012).

DOI: 10.1016/j.scitotenv.2012.08.066

Google Scholar

[20] J. Peña-Bahamonde, C. Wu, S. K. Fanourakis, S. M. Louie, J. Bao, and D. F. Rodrigues, Oxidation state of Mo affects dissolution and visible-light photocatalytic activity of MoO3 nanostructures,, J. Catal., vol. 381, p.508–519, (2020).

DOI: 10.1016/j.jcat.2019.11.035

Google Scholar

[21] M. Ates, A review study of (bio)sensor systems based on conducting polymers,, Materials Science and Engineering C, vol. 33, no. 4. Elsevier B.V., p.1853–1859, (2013).

DOI: 10.1016/j.msec.2013.01.035

Google Scholar

[22] J. Zia, J. Kashyap, and U. Riaz, Facile synthesis of polypyrrole encapsulated V2O5 nanohybrids for visible light driven green sonophotocatalytic degradation of antibiotics,, J. Mol. Liq., vol. 272, p.834–850, (2018).

DOI: 10.1016/j.molliq.2018.10.091

Google Scholar

[23] Q. Zhou, S. Fu, M. Zou, Y. He, Y. Wu, and T. Wu, Deep oxidative desulfurization of model oil catalyzed by magnetic MoO3/Fe3O4,, RSC Adv., vol. 5, no. 85, p.69388–69393, (2015).

DOI: 10.1039/c5ra11028a

Google Scholar

[24] X. Zhang, X. Zeng, M. Yang, and Y. Qi, Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors,, ACS Appl. Mater. Interfaces, vol. 6, no. 2, p.1125–1130, (2014).

DOI: 10.1021/am404724u

Google Scholar

[25] U. Alam, S. Kumar, D. Bahnemann, J. Koch, C. Tegenkamp, and M. Muneer, Harvesting visible light with MoO3 nanorods modified by Fe(iii) nanoclusters for effective photocatalytic degradation of organic pollutants,, Phys. Chem. Chem. Phys., vol. 20, no. 6, p.4538–4545, (2018).

DOI: 10.1039/c7cp08206a

Google Scholar

[26] K. Kumar and A. Chowdhury, Use of Novel Nanostructured Photocatalysts for the Environmental Sustainability of Wastewater Treatments, no. i. Elsevier Ltd., (2020).

Google Scholar

[27] S. Ahmed, M. G. Rasul, R. Brown, and M. A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review,, J. Environ. Manage., vol. 92, no. 3, p.311–330, (2011).

DOI: 10.1016/j.jenvman.2010.08.028

Google Scholar

[28] A. Chithambararaj, N. S. Sanjini, S. Velmathi, and A. Chandra Bose, Preparation of h-MoO3 and α-MoO3 nanocrystals: Comparative study on photocatalytic degradation of methylene blue under visible light irradiation,, Phys. Chem. Chem. Phys., vol. 15, no. 35, p.14761–14769, (2013).

DOI: 10.1039/c3cp51796a

Google Scholar

[29] S. Alkaykh, A. Mbarek, and E. E. Ali-Shattle, Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation,, Heliyon, vol. 6, no. 4, p. e03663, (2020).

DOI: 10.1016/j.heliyon.2020.e03663

Google Scholar

[30] F. Chen et al., Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism,, ACS Appl. Mater. Interfaces, vol. 8, no. 48, p.32887–32900, (2016).

DOI: 10.1021/acsami.6b12278

Google Scholar

[31] Y. Li et al., Visible-light-induced blue MoO3-C3N4 composite with enhanced photocatalytic activity,, Mater. Res. Bull., vol. 70, p.500–505, (2015).

DOI: 10.1016/j.materresbull.2015.05.013

Google Scholar

[32] M. R. Islam, J. B. Islam, M. Furukawa, I. Tateishi, H. Katsumata, and S. Kaneco, Photocatalytic degradation of a systemic herbicide: Picloram from aqueous solution using titanium oxide (tio2) under sunlight,, ChemEngineering, vol. 4, no. 4, p.1–14, (2020).

DOI: 10.3390/chemengineering4040058

Google Scholar

[33] Z. Hu, J. Zhou, Y. Zhang, W. Liu, J. Zhou, and W. Cai, The formation of a direct Z-scheme Bi2O3/MoO3 composite nanocatalyst with improved photocatalytic activity under visible light,, Chem. Phys. Lett., vol. 706, p.208–214, (2018).

DOI: 10.1016/j.cplett.2018.06.006

Google Scholar

[34] W. Teng, X. Tan, X. Li, and Y. Tang, Novel Ag 3 PO 4 /MoO 3 p-n heterojunction with enhanced photocatalytic activity and stability under visible light irradiation,, Appl. Surf. Sci., vol. 409, p.250–260, (2017).

DOI: 10.1016/j.apsusc.2017.03.025

Google Scholar