Poly(L-Lactide) Membrane as an Elastic Membrane to Support Cardiac Bleeding Intervention

Article Preview

Abstract:

Cardiac bleeding is one of the postoperative complications which gives a negative prognostic implication following a heart surgery. Safety measurements are being taken to resolve cardiac bleeding yet unexpected bleeding is unpredictable. Polymer membranes/scaffolds have been developed to overcome this issue. The utilization of poly (L-lactic acid) (PLLA) as a biodegradable and biocompatible polymer, representing a promising approach to serve as a cardiac membrane in covering cardiac bleeding. In the present work, PLLA membranes were fabricated through a solvent-evaporation casting technique at various concentration of 0.01, 0.03, 0.05 and 0.07 g/mL PLLA. The membranes were observed through an inverted microscope and the tensile properties were determined using a texture analyzer. All membranes were viewed in an approximately general similar structure. The 0.07 g/mL PLLA membrane exhibited Young’s modulus of 1480.89 ± 47.80 kPa, and stiffness of about 20.19 ± 0.65 kPa, which is suitable to be used as a cardiac membrane due to its approaching mechanical properties towards the cardiac membrane at its maximum contraction. In future, the PLLA membrane could be incorporated with other bioactive and therapeutic materials to improve its biological properties for cardiac application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1053)

Pages:

98-103

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. S. Bercovitz, A. C. Shewmake, D. K. Newman, R. A. Niebler, J. P. Scott et al.: J. Thorac. Cardiovasc. Surg. Vol. 155 (2018), p.2112–2124.

Google Scholar

[2] G. Loor, A. Vivacqua, J. F. Sabik, L. Li, E. D. Hixson, E. H. Blackstone et al.: J. Thorac. Cardiovasc. Surg. Vol. 146 (2013), p.1028–1032.

Google Scholar

[3] M. Ranucci, E. Baryshnikova, S. Castelvecchio, and G. Pelissero: Ann. Thorac. Surg., Vol. 96 (2013), p.478–485.

Google Scholar

[4] M. Ruel, V. Chan, M. Boodhwani, B. McDonald, X. Ni et al.: J. Thorac. Cardiovasc. Surg. Vol. 154 (2017), p.927–935.

Google Scholar

[5] J. Barnard and R. Millner: Ann. Thorac. Surg., Vol. 88 (2009), p.1377–1383.

Google Scholar

[6] C. Chen, J. Chueh, H. Tseng, H. Huang, and S. Lee: Elsevier. Vol. 24 (2003), p.1167–1173.M.

Google Scholar

[7] R. P. Pawar, S. U. Tekale, S. U. Shisodia, J. T. Totre, and A. J. Domb: Rec. Pat. Regen. Med. Vol. 4 (2014), p.40–51.

Google Scholar

[8] M. A. Jumat, P. Chevallier, D. Mantovani, F. Copes, S. I. A. Razak and S. Saidin: Polym-Plast. Tech. Mat. (2021), pp.1-11.

Google Scholar

[9] D. Bannerman, S. Pascual-Gil, and M. Radisic: Nat. Biomed. Eng. Vol. 3 (2019), p.592–593.

Google Scholar

[10] M. Kitsara, O. Agbulut, D. Kontziampasis, Y. Chen, and P. Menasché: Acta Biomater. Vol. 48 (2017), p.20–40.

DOI: 10.1016/j.actbio.2016.11.014

Google Scholar

[11] Y. S. Liu, Q. L. Huang, A. Kienzle, W. E. G. Müller and Q. L. Feng: Mater. Sci. Eng. C. Vol. 38 (2014), p.227–234.

Google Scholar

[12] T. Lou, M. Leung, X. Wang, J. Y. F. Chang, C. T. Tsao, et al.: J. Biomed. Nanotechnol. Vol. 10 (2014), p.1105–1113.

Google Scholar

[13] I. A. Neumann, T. H. S. Flores-sahagun and A. M. Ribeiro: Polym. Test. Vol. 60 (2017), p.84–93.

Google Scholar

[14] M. Vayer, A. Pineau, F. Warmont, M. Roulet and C. Sinturel: Eur. Polym. Vol. 101 (2018), p.332–340.

DOI: 10.1016/j.eurpolymj.2018.03.006

Google Scholar

[15] J. Chakravarty, M. F. Rabbi, V. Chalivendra, T. Ferreira and C. J. Brigham: Int. J. Biol. Macromol. Vol. 151 (2020), p.1213–1223.

Google Scholar

[16] Z. Yang, J. Si, Z. Cui, J. Ye, X. Wang, et al.: Carbohydr. Polym. Vol. 174 (2017), p.750–759.

Google Scholar

[17] S. F. Chou and K. A. Woodrow: J. Mech. Behav. Biomed. Mater. Vol. 65 (2017), p.724–733.

Google Scholar

[18] A. C. Bobel, S. Lohfeld, R. N. Shirazi, and P. E. Mchugh: Polym. Test. Vol. 54 (2016), p.150–158.

Google Scholar

[19] X. Y. Wang, H. W. Pan, S. L. Jia, Z. W. Cao, L. J. Han, et al.: Chinese. J. Polym. Sci. Vol. 38 (2020), p.1072–1081.

Google Scholar

[20] H. M. Mousa, K. H. Hussein, M. M. Sayed, M. R. El-Aassar, I. M. A. Mohamed et al.: Eur. Polym. J. Vol. 129 (2020), p.109630.

Google Scholar

[21] M. Lebourg, J. S. Anton and J. Ribelles: Eur. Polym. J. Vol. 44 (2008), pp.2207-2218.

Google Scholar

[22] Y. Liu, H. Wei, Z. Wang, Q. Li and N. Tian: Poylmers. Vol. 10 (2010), p.1–13.

Google Scholar

[23] H. M. Alhusaiki-Alghamdi: Results. Phys. Vol. 24 (2021), p.104125.

Google Scholar

[24] S. M. Choi, W. K. Yang, Y. W. Yoo and W. K. Lee: Colloids. Surf. B. Vol. 76 (2010), p.326– 333.

Google Scholar