[1]
Zhiguo Gao. Numerical analysis of microstructure development during laser welding nickel- based single-crystal superalloy part I: stray grain formation. Materials Science Forum,1020 (2021), 23-31.
DOI: 10.4028/www.scientific.net/msf.1020.23
Google Scholar
[2]
Zhiguo Gao. Numerical analysis of microstructure development during laser welding nickel- based single-crystal superalloy part II: multicomponent dendrite growth. Materials Science Forum, 1020(2021),32-40.
DOI: 10.4028/www.scientific.net/msf.1020.32
Google Scholar
[3]
Zhiguo Gao. Numerical analysis of microstructure development during laser welding nickel- based single-crystal superalloy part III: nonequilibrium solidification behavior. Journal of Physics: Conference Series,1733(2021),012006.
DOI: 10.1088/1742-6596/1733/1/012006
Google Scholar
[4]
Zhiguo Gao. Numerical analysis of microstructure development during laser welding nickel- based single-crystal superalloy part IV: welding conditions optimization. Journal of Physics: Conference Series,1733(2021),012008.
DOI: 10.1088/1742-6596/1733/1/012008
Google Scholar
[5]
Zhiguo Gao. Numerical analysis of microstructure development during laser welding nickel- based single-crystal superalloy part V: crystallography-dependent aluminum redistribution. Journal of Physics: Conference Series,1681(2020),012006.
DOI: 10.1088/1742-6596/1681/1/012006
Google Scholar
[6]
Zhiguo Gao. Numerical analysis of solidification behavior during laser welding nickel-based single-crystal superalloy part I: crystallography-dependent solid aluminum distribution. Materials Science Forum,1020(2021),13-22.
DOI: 10.4028/www.scientific.net/msf.1020.13
Google Scholar
[7]
Zhiguo Gao. Numerical analysis of solidification behavior during laser welding nickel-based single-crystal superalloy part II: crystallography-dependent supersaturation of liquid aluminum. Materials Science Forum,1018(2021),13-22.
DOI: 10.4028/www.scientific.net/msf.1018.13
Google Scholar
[8]
Zhiguo Gao. Numerical analysis of aerospace nickel-based single-crystal superalloy weldability part I: crystallography-dependent dendrite growth. Materials Science Forum,1018(2021),3-12.
DOI: 10.4028/www.scientific.net/msf.1018.3
Google Scholar
[9]
Zhiguo Gao. Numerical analysis of aerospace nickel-based single-crystal superalloy weldability part II: nonequilibrium solidification behavior. Materials Science Forum,1018(2021),33-41.
DOI: 10.4028/www.scientific.net/msf.1018.33
Google Scholar
[10]
Zhiguo Gao. Numerical analysis of aerospace nickel-based single-crystal superalloy weldability part III: solidification cracking susceptibility. Materials Science Forum,1018(2021),23-32.
DOI: 10.4028/www.scientific.net/msf.1018.23
Google Scholar
[11]
Saad A. Khairallah, Andy Anderson. Mesoscopic simulation model of selective laser melting of stainless steel powder. Journal of Materials Processing Technology,214(11)(2014),2627-2636.
DOI: 10.1016/j.jmatprotec.2014.06.001
Google Scholar
[12]
Roman Engeli, Thomas Etter, Simone Hovel. Processability of different IN738LC powder batches by selective laser melting. Journal of Materials Processing Technology,229(2016), 484-491.
DOI: 10.1016/j.jmatprotec.2015.09.046
Google Scholar
[13]
M. Reid, M.J. Pomeroy, J.S. Robinson. Microstrctural instability in coated single crystal superalloys. Journal of Materials Processing Technology,153-154(2004),660-665.
DOI: 10.1016/j.jmatprotec.2004.04.132
Google Scholar
[14]
R.A. Mahesh, R. Jayaganthan, S. Prakash. Microstructural characterization and hardness evaluation of HVOF sprayed Ni-5Al coating on Ni- and Fe-based superalloys. Journal of Materials Processing Technology,209(7)(2009),3501-3510.
DOI: 10.1016/j.jmatprotec.2008.08.009
Google Scholar
[15]
Xin Ye, Xueming Hua, Yixiong Wu. Precipitates in coarse-grained heat-affected zone of Ni- based 718 superalloy produced by tungsten inert gas welding. Journal of Materials Processing Technology,217(2015),13-20.
DOI: 10.1016/j.jmatprotec.2014.10.021
Google Scholar
[16]
Ming Pang, Gang Yu, Henghai Wang. Microstructure study of laser welding cast nickel-based superalloy K418.Journal of Materials Processing Technology,207(1-3)(2008),271-275.
DOI: 10.1016/j.jmatprotec.2007.12.091
Google Scholar
[17]
G. Bidron, A. Doghri, T. Malot. Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating. Journal of Materials Processing Technology,277(2020),116461.
DOI: 10.1016/j.jmatprotec.2019.116461
Google Scholar
[18]
Ali Khorram, Akbar Davoodi Jamaloei. Microstructural evolution of laser-clad 75Cr3C2+25 (80Ni20Cr) powder on Inconel 718 superalloy. Journal of Materials Processing Technology,284 (2020),116735.
DOI: 10.1016/j.jmatprotec.2020.116735
Google Scholar
[19]
Chuan Guo, Zhen Xu, Yang Zhou. Single-track investigation of In738LC superalloy fabricated by laser powder bed fusion: Track morphology, bed characteristics and part quality. Journal of Materials Processing Technology,290(2021),117000.
DOI: 10.1016/j.jmatprotec.2020.117000
Google Scholar
[20]
P.L. Blackwell. The mechanical and microstructural characteristics of laser-deposited IN718. Journal of Materials Processing Technology,170(1-2)(2005),240-246.
DOI: 10.1016/j.jmatprotec.2005.05.005
Google Scholar
[21]
Chunbo Zhang, Leijun Li, Andrew Deceuster. Thermomechanical analysis of multi-bead pulsed laser powder deposition of a nickel-based superalloy. Journal of Materials Processing Technology, 211(9)(2011),1478-1487.
DOI: 10.1016/j.jmatprotec.2011.03.023
Google Scholar
[22]
Tinglian Zhang, Huang Yuan, Shun Yang. Microstructural characterization and fatigue performance of the recast material induced by laser manufacturing of a nickel-based superalloy. Journal of Materials Processing Technology,293(2012),117087.
DOI: 10.1016/j.jmatprotec.2021.117087
Google Scholar
[23]
Dariusz Szeliga. Manufacturing of thin-walled Ni-based superalloy casting using alternative thermal insulating module to control solidification. Journal of Materials Processing Technology,278 (2020),116503.
DOI: 10.1016/j.jmatprotec.2019.116503
Google Scholar
[24]
M.M. Franke, R.M. Hilbinger, A. Lohmuller. The effect of liquid cooling on thermal gradients in directional solidification of superalloys: Thermal analysis. Journal of Materials Processing Technology,213(12)(2013),2081-2088.
DOI: 10.1016/j.jmatprotec.2013.06.001
Google Scholar
[25]
J. Safari, S. Nategh. On the heat treatment of Rene 80 nickel-based superalloy. Journal of Materials Processing Technology,176(1-3)(2006),240-250.
DOI: 10.1016/j.jmatprotec.2006.03.165
Google Scholar
[26]
M. Mostafaei, S.M. Abbasi. Solution and solidification process control in Ta-modified CM247LC superalloy. Journal of Materials Processing Technology,231(2016),113-124.
DOI: 10.1016/j.jmatprotec.2015.12.021
Google Scholar
[27]
Mingcan Liu, Guangmin Sheng, Hongjie He. Microstructural evolution and mechanical properties of TLP bonded joints of Mar-M247 superalloys with Ni-Cr-Co-W-Ta-B interlayer. Journal of Materials Processing Technology,246(2017),245-251.
DOI: 10.1016/j.jmatprotec.2017.03.021
Google Scholar
[28]
S. Hadibeyk, B. Beidokhti, S.A. Sajjadi. The effect of interlayer thickness, bonding temperature and atmosphere on transient liquid phase bounding of GTD-111 to FSX-414. Journal of Materials Processing Technology,255(2018),673-678.
DOI: 10.1016/j.jmatprotec.2018.01.022
Google Scholar
[29]
A. Amirkhani, B. Beidokhti, K. Shirvani. Two-step heating transient liquid phase bonding of Inconel 738LC. Journal of Materials Processing Technology,266(2019),1-9.
DOI: 10.1016/j.jmatprotec.2018.10.008
Google Scholar