[1]
Y. Kim, H. Kim, K. Yang, and J. Ha, Effect of concrete unit weight on the mechanical properties of bottom ash aggregate concrete,, Constr. Build. Mater., vol. 273, p.121998, (2021).
DOI: 10.1016/j.conbuildmat.2020.121998
Google Scholar
[2]
Z. Tang, W. Li, V.W.Y. Tam, and C. Xue, Resources, Conservation & Recycling: X Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials,, Resour. Conserv. Recycl. X, vol. 6, no. March, p.100036, (2020).
DOI: 10.1016/j.rcrx.2020.100036
Google Scholar
[3]
S. Nasir, K. Hung, S. Poh, J. Yang, and T. Ling, Resources , Conservation & Recycling Lightweight foamed concrete as a promising avenue for incorporating waste materials : A review,, Resour. Conserv. Recycl., vol. 164, no. July 2020, p.105103, (2021).
DOI: 10.1016/j.resconrec.2020.105103
Google Scholar
[4]
R. Dachowski and P. Kostrzewa, The Use of Waste Materials in the Construction Industry,, Procedia Eng., vol. 161, p.754–758, (2016).
DOI: 10.1016/j.proeng.2016.08.764
Google Scholar
[5]
S. Nasier, Materials Today : Proceedings Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials,, Mater. Today Proc., no. xxxx, (2021).
DOI: 10.1016/j.matpr.2020.12.381
Google Scholar
[6]
M. Rafieizonooz, J. Mirza, M. R. Salim, M. W. Hussin, and E. Khankhaje, Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement,, Constr. Build. Mater., vol. 116, p.15–24, (2016).
DOI: 10.1016/j.conbuildmat.2016.04.080
Google Scholar
[7]
M. Singh and R. Siddique, Resources , Conservation and Recycling Effect of coal bottom ash as partial replacement of sand on properties of concrete," ,Resources, Conserv. Recycl., vol. 72, p.20–32, (2013).
DOI: 10.1016/j.resconrec.2012.12.006
Google Scholar
[8]
N. N. Thi, T. P. Hong, and S. B. Truong, Utilizing Coal Bottom Ash from Thermal Power Plants in Vietnam as Partial Replacement of Aggregates in Concrete Pavement,, vol. 2019, (2019).
DOI: 10.1155/2019/3903097
Google Scholar
[9]
N. Singh and A. Bhardwaj, Reviewing the role of coal bottom ash as an alternative of cement,, Constr. Build. Mater., vol. 233, p.117276, (2020).
DOI: 10.1016/j.conbuildmat.2019.117276
Google Scholar
[10]
G. E. E. N. M. Aterial, Jurnal Teknologi P LANTS IN M ALAYSIA AND ITS S UITABILITY AS,, vol. 5, p.1–10, (2016).
Google Scholar
[11]
P. Khongpermgoson, K. Boonlao, N. Ananthanet, and T. Thitithananon, The mechanical properties and heat development behavior of high strength concrete containing high fineness coal bottom ash as a pozzolanic binder,, Constr. Build. Mater., vol. 253, p.119239, (2020).
DOI: 10.1016/j.conbuildmat.2020.119239
Google Scholar
[12]
M. Singh and R. Siddique, Compressive strength , drying shrinkage and chemical resistance of concrete incorporating coal bottom ash as partial or total replacement of sand,, Constr. Build. Mater., vol. 68, p.39–48, (2014).
DOI: 10.1016/j.conbuildmat.2014.06.034
Google Scholar
[13]
N.I.R. Ramzi Hannan, S. Shahidan, N. Ali, N. M. Bunnori, S. S. Mohd Zuki, and M. H. Wan Ibrahim, Acoustic and non-acoustic performance of coal bottom ash concrete as sound absorber for wall concrete,, Case Stud. Constr. Mater., vol. 13, p. e00399, (2020).
DOI: 10.1016/j.cscm.2020.e00399
Google Scholar
[14]
S.S.G. Hashemi, H. Bin Mahmud, T.C. Ghuan, A.B. Chin, C. Kuenzel, and N. Ranjbar, Safe disposal of coal bottom ash by solidification and stabilization techniques,, Constr. Build. Mater., vol. 197, p.705–715, (2019).
DOI: 10.1016/j.conbuildmat.2018.11.123
Google Scholar
[15]
E. Baite, A. Messan, K. Hannawi, F. Tsobnang, and W. Prince, Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre ( Niger ),, Constr. Build. Mater., vol. 125, p.919–926, (2016).
DOI: 10.1016/j.conbuildmat.2016.08.117
Google Scholar
[16]
N. Singh, M. Mithulraj, and S. Arya, Resources , Conservation & Recycling Utilization of coal bottom ash in recycled concrete aggregates based self compacting concrete blended with metakaolin,, Resour. Conserv. Recycl., vol. 144, no. September 2018, p.240–251, (2019).
DOI: 10.1016/j.resconrec.2019.01.044
Google Scholar
[17]
R. Rodríguez-álvaro, B. González-fonteboa, S. Seara-paz, and E. J. Rey-bouzón, Masonry mortars , precast concrete and masonry units using coal bottom ash as a partial replacement for conventional aggregates,, vol. 283, (2021).
DOI: 10.1016/j.conbuildmat.2021.122737
Google Scholar
[18]
O. Gencel, O. Karadag, O. H. Oren, and T. Bilir, Steel slag and its applications in cement and concrete technology: A review,, Constr. Build. Mater., vol. 283, p.122783, (2021).
DOI: 10.1016/j.conbuildmat.2021.122783
Google Scholar
[19]
A.C.P. Martins et al., Steel slags in cement-based composites: An ultimate review on characterization, applications and performance,, Constr. Build. Mater., vol. 291, p.123265, (2021).
Google Scholar
[20]
Y. Guo, J. Xie, W. Zheng, and J. Li, Tgk d,, Constr. Build. Mater., vol. 192, p.194–201, (2018).
Google Scholar
[21]
S. Kourounis, S. Tsivilis, P. E. Tsakiridis, G. D. Papadimitriou, and Z. Tsibouki, Properties and hydration of blended cements with steelmaking slag,, vol. 37, p.815–822, (2007).
DOI: 10.1016/j.cemconres.2007.03.008
Google Scholar
[22]
M. Papachristoforou, E. K. Anastasiou, and I. Papayianni, Durability of steel fiber reinforced concrete with coarse steel slag aggregates including performance at elevated temperatures,, Constr. Build. Mater., vol. 262, p.120569, (2020).
DOI: 10.1016/j.conbuildmat.2020.120569
Google Scholar
[23]
H. Qasrawi, The use of steel slag aggregate to enhance the mechanical properties of recycled aggregate concrete and retain the environment,, Constr. Build. Mater., vol. 54, p.298–304, (2014).
DOI: 10.1016/j.conbuildmat.2013.12.063
Google Scholar
[24]
N. Palankar, A. U. Ravi Shankar, and B. M. Mithun, Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates,, J. Clean. Prod., vol. 129, p.437–448, (2016).
DOI: 10.1016/j.jclepro.2016.04.033
Google Scholar
[25]
B. Pang, Z. Zhou, and H. Xu, Utilization of carbonated and granulated steel slag aggregate in concrete,, Constr. Build. Mater., vol. 84, p.454–467, (2015).
DOI: 10.1016/j.conbuildmat.2015.03.008
Google Scholar
[26]
J. Baalamurugan et al., Recycling of steel slag aggregates for the development of high density concrete: Alternative & environment-friendly radiation shielding composite,, Compos. Part B Eng., vol. 216, no. October 2020, p.108885, (2021).
DOI: 10.1016/j.compositesb.2021.108885
Google Scholar
[27]
S. Saxena and A. R. Tembhurkar, Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete,, Constr. Build. Mater., vol. 165, p.126–137, (2018).
DOI: 10.1016/j.conbuildmat.2018.01.030
Google Scholar
[28]
A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M. I. Guerra-Romero, and J. M. Morán-del Pozo, Mechanical and microstructural characterization of non-structural precast concrete made with recycled mixed ceramic aggregates from construction and demolition wastes,, J. Clean. Prod., vol. 180, p.482–493, (2018).
DOI: 10.1016/j.jclepro.2018.01.191
Google Scholar
[29]
S. Ray, M. Haque, S. A. Soumic, A. F. Mita, M. M. Rahman, and B. B. Tanmoy, Use of ceramic wastes as aggregates in concrete production: A review,, J. Build. Eng., vol. 43, no. February, (2021).
DOI: 10.1016/j.jobe.2021.102567
Google Scholar
[30]
J. Bommisetty, T. S. Keertan, A. Ravitheja, and K. Mahendra, Effect of waste ceramic tiles as a partial replacement of aggregates in concrete,, Mater. Today Proc., vol. 19, p.875–877, (2019).
DOI: 10.1016/j.matpr.2019.08.230
Google Scholar
[31]
M. Amin, B. A. Tayeh, and I. S. Agwa, Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete,, J. Clean. Prod., vol. 273, p.123073, (2020).
DOI: 10.1016/j.jclepro.2020.123073
Google Scholar
[32]
P. O. Awoyera, J. M. Ndambuki, J. O. Akinmusuru, and D. O. Omole, Characterization of ceramic waste aggregate concrete,, HBRC J., p.1–6, (2016).
DOI: 10.1016/j.hbrcj.2016.11.003
Google Scholar
[33]
A.V. Alves, T.F. Vieira, J. De Brito, and J.R. Correia, Mechanical properties of structural concrete with fine recycled ceramic aggregates,, Constr. Build. Mater., vol. 64, p.103–113, (2014).
DOI: 10.1016/j.conbuildmat.2014.04.037
Google Scholar
[34]
S.A. Md Daniyal, Application of Waste Ceramic Tile Aggregates in Concrete,, no. December 2015, (2016).
Google Scholar
[35]
K. Rashid, A. Razzaq, M. Ahmad, T. Rashid, and S. Tariq, Experimental and analytical selection of sustainable recycled concrete with ceramic waste aggregate,, Constr. Build. Mater., vol. 154, p.829–840, (2017).
DOI: 10.1016/j.conbuildmat.2017.07.219
Google Scholar
[36]
J.X. Lu, B.J. Zhan, Z.H. Duan, and C.S. Poon, Using glass powder to improve the durability of architectural mortar prepared with glass aggregates,, Mater. Des., vol. 135, p.102–111, (2017).
DOI: 10.1016/j.matdes.2017.09.016
Google Scholar
[37]
W. Dong, W. Li, and Z. Tao, Resources , Conservation & Recycling A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder , sand or cullet,, Resour. Conserv. Recycl., vol. 172, no. May, p.105664, (2021).
DOI: 10.1016/j.resconrec.2021.105664
Google Scholar
[38]
S. Yang, T. C. Ling, H. Cui, and C. S. Poon, Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks,, Constr. Build. Mater., vol. 209, p.522–531, (2019).
DOI: 10.1016/j.conbuildmat.2019.03.131
Google Scholar
[39]
K. Afshinnia and P. R. Rangaraju, Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete,, Constr. Build. Mater., vol. 117, p.263–272, (2016).
DOI: 10.1016/j.conbuildmat.2016.04.072
Google Scholar
[40]
Z. Pan, Z. Tao, T. Murphy, and R. Wuhrer, High temperature performance of mortars containing fi ne glass powders,, J. Clean. Prod., vol. 162, p.16–26, (2017).
DOI: 10.1016/j.jclepro.2017.06.003
Google Scholar