Fire Protection of Steel with Thermal Insulation Granular Plate Material on Geocement-Based

Article Preview

Abstract:

This article presents the results of determining the fire-retardant efficiency of heat-insulating granular plate based on geocement to protect metal structures from fire. According to the results of fire tests, it they found that with a plate thickness of 40 mm, the metal surface of an I-beam they heated to a critical temperature of 500 °C after 100 minutes of fire tests. This indicator provides the fire resistance class of metal structures P90 and the III group of fire retardant efficiency of metal structures. Based on the calculated data according to Eurocode 3, it they found that the critical heating temperature of an I-beam up to 538 °C with a plate thickness of 40 mm they achieved after 105 minutes of fire tests. This provides the fire resistance class of the steel column P90 and the III group of fire retardant efficiency. In order to ensure the fire resistance class P120, in the future, it is necessary to increase the thickness of the heat-insulating granular plate to 50 mm, which will allow transferring metal structures to the II group of fire retardant efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1066)

Pages:

199-205

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Guzii, Y. Otrosh, O. Guzii, A. Kovalov, K. Sotiriadis, Determination of the Fire-Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire, Materials Science Forum. 1038 (2021) 524–530.

DOI: 10.4028/www.scientific.net/msf.1038.524

Google Scholar

[2] P. Krivenko, S. Guzii, et al., Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. Journal of Building Engineering. 8 (2016) 14–19.

DOI: 10.1016/j.jobe.2016.09.003

Google Scholar

[3] A. Kravchenko, S. Guzii, Determining the fire resistance properties of timber, protected by geocement-based coatings. Eastern-European Journal of Enterprise Technologies. 1(5) (2015) 38–41.

DOI: 10.15587/1729-4061.2015.36843

Google Scholar

[4] N.T. Abdel-Ghani, H.A. Elsayed, S. A. Moiled, Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance, HBRC Journal. 14(2) (2018) 159–164.

DOI: 10.1016/j.hbrcj.2016.06.001

Google Scholar

[5] J. Sarazin, C.A. Davy, et al., Flame resistance of geopolymer foam coatings for the fire protection of steel, Composites Part B: Engineering. 222 (2021) 109045.

DOI: 10.1016/j.compositesb.2021.109045

Google Scholar

[6] M.-B. Watolla, G.J.G. Gluth, et al., Intumescent geopolymer-bound coatings for fire protection of steel, Journal of Ceramic Science and Technology. 8(3) (2017) 351–364.

Google Scholar

[7] L. Salmabanu, D. Nicolaides, I. Luhar, Fire Resistance Behaviour of Geopolymer Concrete: An Overview, Buildings. 11(3) (2021) 82.

DOI: 10.3390/buildings11030082

Google Scholar

[8] D.C. Comrie, W.M. Kriven, Composite cold ceramic geopolymer in a refractory application, Ceramic Transactions. 153 (2003) 211–225.

DOI: 10.1002/9781118406892.ch14

Google Scholar

[9] M. Sukhanevich, S. Guzii, The effect of technological factors on properties of alkali aluminosilicate systems used for preparation of fireproof coatings. Refractories and Industrial Ceramics. 45 (2004) 217–219.

DOI: 10.1023/b:refr.0000036733.85631.f1

Google Scholar

[10] K. Sotiriadis, S. Guzii, et al., Thermal Behavior of an Intumescent Alkaline Aluminosilicate Composite Material for Fire Protection of Structural Elements, Journal of Materials in Civil Engineering. 31(6) (2019) 04019058.

DOI: 10.1061/(asce)mt.1943-5533.0002702

Google Scholar

[11] K. Sotiriadis, S. Guzii, et al., The effect of firing temperature on the composition and microstructure of a geocement-based binder of sodium water-glass, Solid State Phenomena. 267 (2017) 58–62.

DOI: 10.4028/www.scientific.net/ssp.267.58

Google Scholar

[12] Š. Hýsek, M. Frydrych, et al., Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties, Materials. 12 (2019) 1432.

DOI: 10.3390/ma12091432

Google Scholar

[13] J.W. Gu, G.C. Zhang, et al., Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings, Surface and Coatings Technology. 201 (2007) 7835–7841.

DOI: 10.1016/j.surfcoat.2007.03.020

Google Scholar

[14] X. Peng, H. Li, Q. Shuai, L. Wang, Fire Resistance of Alkali Activated Geopolymer Foams Produced from Metakaolin and Na2O2, Materials. 13 (2020) 535.

DOI: 10.3390/ma13030535

Google Scholar

[15] P. Krivenko, S. Guzii, R. Hela. The influence of cavitation treatment on nanostructuring of alkali aluminosilicate binder for intumescent coatings, Materials Science Forum. 908 (2017) 63–70.

DOI: 10.4028/www.scientific.net/msf.908.63

Google Scholar

[16] L. Bodnarova, S. Guzii, et al. Nano-structured alkaline aluminosilicate binder by carbonate mineral addition, Solid State Phenomena. 276 (2018) 192–197.

DOI: 10.4028/www.scientific.net/ssp.276.192

Google Scholar

[17] V. Kyrychok, P. Kryvenko, S. Guzii. Influence of the СaО-containing modifiers on the properties of alkaline alumosilicate binders, Eastern-European Journal of Enterprise Technologies. 2(6-98) (2019) 36–42.

DOI: 10.15587/1729-4061.2019.161758

Google Scholar

[18] S. Guzii, T. Kurska, et al. Features of the organic-mineral intumescent paints structure formation for wooden constructions fire protection. IOP Conf. Ser.: Mater. Sci. Eng. 1162 (2021) 012003.

DOI: 10.1088/1757-899x/1162/1/012003

Google Scholar

[19] S. Duquesne, S. Magnet, C. Jama, R. Delobel, Intumescent paints: Fire protective coatings for metallic substrates, Surface and Coatings Technology. 180 (2004) 302–307.

DOI: 10.1016/j.surfcoat.2003.10.075

Google Scholar

[20] T. Mariappan, Recent developments of intumescent fire protection coatings for structural steel: A review, Journal of Fire Sciences. 34 (2016) 120–163.

DOI: 10.1177/0734904115626720

Google Scholar

[21] S. Duquesne, P. Bachelet, et al., Influence of inorganic fillers on the fire protection of intumescent coatings, Journal of Fire Sciences. 31 (2013) 258–275.

DOI: 10.1177/0734904112467291

Google Scholar

[22] V. Petránek, S. Guzii, L. Nevrivova, D. Zezulova, Thermal Insulating Materials for Energy Storage Application, Advanced Materials Research. 911 (2014) 30–35.

DOI: 10.4028/www.scientific.net/amr.911.30

Google Scholar

[23] V. Petranek, S. Guzii, K. Sotiriadis, L. Nevrivova, Study on the Properties of Geocement Based Thermal Insulating Materials for High Temperature Technical Appliances, Advanced Materials Research. 734–737 (2013) 2356–2359.

DOI: 10.4028/www.scientific.net/amr.734-737.2356

Google Scholar

[24] P. Kryvenko, Y. Tsapko, S. Guzii, A. Kravchenko, Determination of the effect of fillers on the intumescent ability of the organic-inorganic coatings of building constructions, Eastern-European Journal of Enterprise Technologies. 5(10–83) (2016) 26–31.

DOI: 10.15587/1729-4061.2016.79869

Google Scholar

[25] L.N. Vakhitova, K.V. Kalafat, Structural fire protection systems for steel, Journal of Industrial construction and engineering structures. 4 (2015) 28–32.

Google Scholar

[26] L.N. Vakhitova, K.V. Kalafat, Fundamentals of fire protection of steel structures, Journal of Industrial construction and engineering structures. 4 (2015) 23–27.

Google Scholar