Effect of Modified Starch on Properties of Clay Composites

Article Preview

Abstract:

This study is devoted to clay modification with a corn starch biopolymer. Authors given the assessment of three different starch thermal modifications (cold, hot and combined), as well as their effect on the clay composite. Described the principle of starch thermal modification and its structural transformations during heat treatment. Incorporation of the gelated starch into clay body contributes to the strength increasing of the clay composite up 18% to 126% for gelatinized and retrograded starch, respectively. Due to its covering properties, the gelled and retrograded starch hydrogel integrates well into the structure of the clay composite and has a positive effect on both its mechanical and physical properties. Also, the obtained clay composite is ecological due to its natural components.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1071)

Pages:

215-221

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Zabalza Bribián, A. Valero Capilla, A. Aranda Usón, Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential, Build. Environ. Vol. 46(5) (2011), p.1133.

DOI: 10.1016/j.buildenv.2010.12.002

Google Scholar

[2] L. Ben-Alon, V. Loftness, K. Harries, G. DiPietro, E.C. Hameen, Cradle to site Life Cycle Assessment (LCA) of natural vs conventional building materials: A case study on cob earthen material, Build. Environ. Vol. 160 (2019).

DOI: 10.1016/j.buildenv.2019.05.028

Google Scholar

[3] E. Christoforou, A. Kylili, P.A. Fokaides, I. Ioannou, Cradle to site Life Cycle Assessment (LCA) of adobe bricks, J. Clean. Prod. Vol. 112 (2016), p.443.

DOI: 10.1016/j.jclepro.2015.09.016

Google Scholar

[4] S. Marcelino-Sadaba, J. Kinuthia, J. Oti, A. Seco Meneses, Challenges in Life Cycle Assessment (LCA) of stabilised clay-based construction materials, Appl. Clay Sci. 144 (2017), p.121.

DOI: 10.1016/j.clay.2017.05.012

Google Scholar

[5] P. Melià, G. Ruggieri, S. Sabbadini, G. Dotelli, Environmental impacts of natural and conventional building materials: a case study on earth plasters, J. Clean. Prod. Vol. 80 (2014), p.179.

DOI: 10.1016/j.jclepro.2014.05.073

Google Scholar

[6] J.E. Oti, J.M. Kinuthia, J. Bai, Engineering properties of unfired clay masonry bricks, Eng. Geo. Vol. 107 (2009), p.130.

DOI: 10.1016/j.enggeo.2009.05.002

Google Scholar

[7] T. Ashour, A. Korjenic, S. Korjenic, W. Wud, Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum, Energy Build. Vol. 104 (2015), p.139.

DOI: 10.1016/j.enbuild.2015.07.016

Google Scholar

[8] P. Muñoz, V. Letelier, L. Muñoz, M.A. Bustamante, Adobe bricks reinforced with paper & pulp wastes improving thermal and mechanical properties, Constr. Build. Mater. Vol. 254 (2020).

DOI: 10.1016/j.conbuildmat.2020.119314

Google Scholar

[9] M. Giroudon, A. Laborel-Préneron, J.E. Aubert, C. Magniont, Comparison of barley and lavender straws as bioaggregates in earth bricks, Constr. Build. Mater. Vol. 202 (2019), p.254.

DOI: 10.1016/j.conbuildmat.2018.12.126

Google Scholar

[10] G. Alhaik, V. Dubois, E. Wirquin, A. Leblanc, G. Aouad, Evaluate the influence of starch on earth/hemp or flax straws mixtures properties in presence of superplasticizer, Constr. Build. Mater. Vol. 186 (2018), p.762.

DOI: 10.1016/j.conbuildmat.2018.07.209

Google Scholar

[11] P. Donkor, E. Obonyo, Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers, Mater. Des. Vol. 83 (2015), p.813.

DOI: 10.1016/j.matdes.2015.06.017

Google Scholar

[12] C. Dove: WIT Trans. Ecol. Environ. Vol. 142 (2014), p.219. Available online: https://www.witpress.com/Secure/elibrary/papers/ARC14/ARC14020FU1.pdf.

Google Scholar

[13] C. Galán-Marín, C. Rivera-Gómez, J. Petric, Clay-based composite stabilized with natural polymer and fibre, Constr. Build. Mater. Vol. 24(8) (2010), p.1462.

DOI: 10.1016/j.conbuildmat.2010.01.008

Google Scholar

[14] I. Chang, A. K. Prasidhi, J. Im, and G.C. Cho, Soil strengthening using thermo-gelation biopolymers, Constr. Build. Mater. Vol. 77 (2015), p.430.

DOI: 10.1016/j.conbuildmat.2014.12.116

Google Scholar

[15] A. Soldo, M. Miletić, M.L. Auad, Biopolymers as a sustainable solution for the enhancement of soil mechanical properties, Sci. Rep. Vol. 10(1) (2020).

DOI: 10.1038/s41598-019-57135-x

Google Scholar

[16] Y.I. Cornejo-Ramírez, O. Martínez-Cruz, C.L. Del Toro-Sanchez, F.J. Wong-Corral, J. Borboa-Flores, F.J. Cinco-Moroyoqui, The structural characteristics of starches and their functional properties, CyTA - J. Food Vol. 16 (2018), p.1003.

DOI: 10.1080/19476337.2018.1518343

Google Scholar

[17] S. Wang, C. Li, L. Copeland, Q. Niu, S. Wang, Starch retrogradation: a comprehensive review, Compr. Rev. Food Sci. Food Saf. Vol. 14 (2015), p.568.

DOI: 10.1111/1541-4337.12143

Google Scholar

[18] G. Alhaik, M. Ferreira, V. Dubois, E. Wirquin, S. Tilloy, E. Monflier, G. Aouad, Enhance the rheological and mechanical properties of clayey materials by adding starches, Constr. Build. Mater. Vol. 139 (2017), p.602.

DOI: 10.1016/j.conbuildmat.2016.11.130

Google Scholar