A Review of the Synthesis, Performance, and Mechanism of Strontium Based Mechanoluminescence Material

Article Preview

Abstract:

Various types of sensors are used for structural health monitoring systems, some of these systems are strain sensors, vibration sensors, etc. which are based on the resistance of material whose change can be recorded via a microcontroller and plotted to understand the real-time behavior of a structure and the effects of various loads acting on it. But these sensors require expensive equipment and skilled personnel, external power, as well as the acquired data needs to be processed such that some sense can be made out of it. Thus, a new method of Structural Health Monitoring using Mechanoluminescence materials that don't require external power seems quite promising, but being in the initial stage of research and development it comes with its own set of challenges. This study tries to understand the synthesis methods available to synthesize Strontium-based Mechanoluminescence sensors, their working, the embedment processes, and their performance when subjected to loading.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1072)

Pages:

177-184

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Timilsina, K. H. Lee, Y. N. Kwon, and J. S. Kim, Optical evaluation of in situ crack propagation by using mechanoluminescence of sral2o4:eu2+, Dy3+,, Journal of the American Ceramic Society, vol. 98, no. 7, p.2197–2204, Mar. (2015).

DOI: 10.1111/jace.13566

Google Scholar

[2] I. P. Sahu, D. P. Bisen, R. K. Tamrakar, K. V. R. Murthy, and M. Mohapatra, Luminescence studies on the europium doped strontium metasilicate phosphor prepared by solid-state reaction method,, Journal of Science: Advanced Materials and Devices, vol. 2, no. 1, p.59–68, Mar. (2017).

DOI: 10.1016/j.jsamd.2017.01.001

Google Scholar

[3] I. P. Sahu, D. P. Bisen, N. Brahme, and R. K. Tamrakar, "Luminescence behavior of europium activated.

Google Scholar

[4] strontium aluminate phosphors by solid-state reaction method," Journal of Materials Science: Materials in Electronics, vol. 27, no. 4, p.3443–3455, Dec. (2015).

DOI: 10.1007/s10854-015-4177-7

Google Scholar

[5] Y. Imai, R. Momoda, and C. -N. Xu, Elasticoluminescence of europium-doped strontium aluminate spherical particles dispersed in polymeric matrices,, Materials Letters, vol. 61, no. 19–20, p.4124–4127, Aug. (2007).

DOI: 10.1016/j.matlet.2007.01.069

Google Scholar

[6] L. B. Carani, V. O. Eze, C. Iwuagwu, and O. I. Okoli, Performance Analysis of Embedded Mechanoluminescence-Perovskite Self-Powered Pressure Sensor for Structural Health Monitoring,, Journal of Composites Science, vol. 4, no. 4, p.190, Dec. (2020).

DOI: 10.3390/jcs4040190

Google Scholar

[7] M. A. S. Shohag, V. O. Eze, L. Braga Carani, and O. I. Okoli, Fully Integrated Mechanoluminescent Devices with Nanometer-Thick Perovskite Film as Self-Powered Flexible Sensor for Dynamic Pressure Sensing,, ACS Applied Nano Materials, vol. 3, no. 7, p.6749–6756, Jun. (2020).

DOI: 10.1021/acsanm.0c01168

Google Scholar

[8] I. Bite et al., Novel method of phosphorescent strontium aluminate coating preparation on aluminum,, Materials & Design, vol. 160, p.794–802, Dec. (2018).

DOI: 10.1016/j.matdes.2018.10.021

Google Scholar

[9] J. R. N. Gnidakouong and G. J. Yun, Dislocation density level induced divergence between stress-free afterglow and mechanoluminescence in SrAl2O4: Eu2+, Dy3+,, Ceramics International, vol. 45, no. 2, p.1794–1802, Feb. (2019).

DOI: 10.1016/j.ceramint.2018.10.066

Google Scholar

[10] K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, Direct Observation of Crack Tip Stress Field Using the Mechanoluminescence of SrAl2O4:(Eu, Dy, Nd),, Journal of the American Ceramic Society, vol. 85, no. 3, p.712–714, Dec. (2004).

DOI: 10.1111/j.1151-2916.2002.tb00158.x

Google Scholar

[11] T. W. Kerekes, H. You, T. Hemmatian, J. Kim, and G. J. Yun, Enhancement of mechanoluminescence sensitivity of SrAl2O4: Eu2+, Dy3+/Epoxy composites by ultrasonic curing treatment method,, Composite Interfaces, vol. 28, no. 1, p.77–99, Mar. (2020).

DOI: 10.1080/09276440.2020.1740522

Google Scholar

[12] M. P. Anesh, S. K. H. Gulrez, A. Anis, H. Shaikh, M. E. Ali Mohsin, and S. M. AL-Zahrani, Developments in Eu+2-Doped Strontium Aluminate and Polymer/Strontium Aluminate Composite,, Advances in Polymer Technology, vol. 33, no. S1, p. n/a-n/a, Jun. (2014).

DOI: 10.1002/adv.21436

Google Scholar

[13] K.-S. Sohn, S. Timilsina, S. P. Singh, J.-W. Lee, and J. S. Kim, A Mechanoluminescent ZnS: Cu/Rhodamine/SiO2/PDMS and Piezoresistive CNT/PDMS Hybrid Sensor: Red-Light Emission and a Standardized Strain Quantification,, ACS Applied Materials & Interfaces, vol. 8, no. 50, p.34777–34783, Dec. (2016).

DOI: 10.1021/acsami.6b12931

Google Scholar

[14] C. Wu et al., Efficient Mechanoluminescent Elastomers for Dual‐Responsive Anticounterfeiting Device and Stretching/Strain Sensor with Multimode Sensibility,, Advanced Functional Materials, vol. 28, no. 34, p.1803168, Jun. (2018).

DOI: 10.1002/adfm.201803168

Google Scholar

[15] M. Kimi, L. Yuliati, and M. Shamsuddin, Preparation of High Activity Ga and Cu Doped ZnS by Hydrothermal Method for Hydrogen Production under Visible Light Irradiation,, Journal of Nanomaterials, vol. 2015, p.1–9, (2015).

DOI: 10.1155/2015/195024

Google Scholar

[16] S. J. Sajan, N. Gopakumar, P. S. Anjana, and K. Madhukumar, "Synthesis.

Google Scholar

[17] characterization, and mechanoluminescence of europium doped Zn Ba(1−)Al2O4.

Google Scholar

[18] (x=0, 0.4, 0.5, 0.6, 0.8, 1.0) phosphor," Journal of Luminescence, vol. 174, p.11–16, Jun. (2016).

Google Scholar

[19] H. Lv, Z. Pan, and Y. Wang, Synthesis and mechanoluminescent property of (Eu2+, Dy3+)-co-doped strontium aluminate phosphor by soft mechanochemistry-assisted solid-state method,, Journal of Luminescence, vol. 209, p.129–140, May (2019).

DOI: 10.1016/j.jlumin.2019.01.026

Google Scholar

[20] P. Jha and B. P. Chandra, Survey of the literature on mechanoluminescence from 1605 to 2013,, Luminescence, vol. 29, no. 8, p.977–993, Apr. (2014).

DOI: 10.1002/bio.2647

Google Scholar

[21] A. A. Banishev and A. F. Banishev, Structure, luminescence and mechano-optical properties of strontium aluminate doped with europium and dysprosium ions,, IOP Conference Series: Materials Science and Engineering, vol. 812, p.012007, May (2020).

DOI: 10.1088/1757-899x/812/1/012007

Google Scholar

[22] Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, Luminescent properties of SrAl2O4: Eu, Dy material prepared by the gel method,, Journal of the European Ceramic Society, vol. 20, no. 12, p.2129–2132, Nov. (2000).

DOI: 10.1016/s0955-2219(00)00092-3

Google Scholar

[23] S. Timilsina, J. S. Kim, J. Kim, and G.-W. Kim, Review of state-of-the-art sensor applications using mechanoluminescence microparticles,, International Journal of Precision Engineering and Manufacturing, vol. 17, no. 9, p.1237–1247, Sep. (2016).

DOI: 10.1007/s12541-016-0149-y

Google Scholar

[24] Y. Fujio et al., Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,, International Journal of Hydrogen Energy, vol. 41, no. 2, p.1333–1340, Jan. (2016).

DOI: 10.1016/j.ijhydene.2015.10.073

Google Scholar

[25] W. X. Wang, Y. Imai, C. N. Xu, T. Matsubara, and Y. Takao, A New Smart Damage Sensor Using Mechanoluminescence Material,, Materials Science Forum, vol. 675–677, p.1081–1084, Feb. (2011).

DOI: 10.4028/www.scientific.net/msf.675-677.1081

Google Scholar

[26] E. Pulliam, G. Hoover, and D. Ryu, "Multifunctional Mechano-Luminescent-Optoelectronic Composites for.

Google Scholar

[27] Self-Powered Strain Sensing," Sep. 2017, Accessed: Sep. 14, (2021).

Google Scholar

[28] B. P. Chandra, V. K. Chandra, S. K. Mahobia, P. Jha, R. Tiwari, and B. Haldar, Real-time mechanoluminescence sensing of the amplitude and duration of impact stress,, Sensors and Actuators A: Physical, vol. 173, no. 1, p.9–16, Jan. (2012).

DOI: 10.1016/j.sna.2011.09.043

Google Scholar

[29] A. Feng, S. Michels, A. Lamberti, and P. F. Smet, Mechanoluminescent Materials: A New Way to Analyze Stress by Light,, Proceedings, vol. 2, no. 8, p.492, Jun. (2018).

DOI: 10.3390/icem18-05422

Google Scholar

[30] W. X. Wang, T. Matsubara, Y. Takao, Y. Imai, and C. N. Xu, Visualization of Stress Distribution Using Smart Mechanoluminescence Sensor,, Materials Science Forum, vol. 614, p.169–174, Mar. (2009).

DOI: 10.4028/www.scientific.net/msf.614.169

Google Scholar

[31] D. Kim, Recent Developments in Lanthanide-Doped Alkaline Earth Aluminate Phosphors with Enhanced and Long-Persistent Luminescence,, Nanomaterials, vol. 11, no. 3, p.723, Mar. (2021).

DOI: 10.3390/nano11030723

Google Scholar

[32] T. Peng, L. Huajun, H. Yang, and C. Yan, Synthesis of SrAl2O4:Eu, Dy phosphor nanometer powders by sol-gel processes and its optical properties,, Materials Chemistry and Physics, vol. 85, no. 1, p.68–72, May (2004).

DOI: 10.1016/j.matchemphys.2003.12.001

Google Scholar

[33] M. A. Lephoto, O. M. Ntwaeaborwa, S. S. Pitale, H. C. Swart, J. R. Botha, and B. M. Mothudi, Synthesis and characterization of BaAl2O4:Eu2+ co-doped with different rare-earth ions,, Physica B: Condensed Matter, vol. 407, no. 10, p.1603–1606, May (2012).

DOI: 10.1016/j.physb.2011.09.096

Google Scholar

[34] Characterization of Minerals, Metals, and Materials 2020," Google Books. https://books.google.co.in/books,id=PADMDwAAQBAJ&pg=PA518&lpg=PA518&dq=Mishra,+S.+B.;+ Mishra,+A.+K.;+Revaprasadu,+N.;+Hillie,+K.+T.;+Steyn,+W.+J.+v.;+Coetsee,+E.;+Swart,+H.+C.+J+Ap plPolym+Sci+2009,+112,+3347%E2%80%933354.&source=bl&ots=u3pclQodqe&sig=ACfU3U2wqYLY PWm90yxD8g4ynt2oa4VGnQ&hl=en&sa=X&ved=2ahUKEwjuhIa8ipjzAhXL6XMBHehxCnwQ6AF6BA gCEAM#v=onepage&q=Mishra%2C%20S.%20B.%3B%20Mishra%2C%20A.%20K.%3B%20Revaprasad u%2C%20N.%3B%20Hillie%2C%20K.%20T.%3B%20Steyn%2C%20W.%20J.%20v.%3B%20Coetsee% 2C%20E.%3B%20Swart%2C%20H.%20C.%20J%20ApplPolym%20Sci%202009%2C%20112%2C%203 347%E2%80%933354.&f=false.

Google Scholar

[35] F. Clabau et al., Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+,, Chemistry of Materials, vol. 17, no. 15, p.3904–3912, Jul. (2005).

DOI: 10.1021/cm050763r

Google Scholar