[1]
S. Timilsina, K. H. Lee, Y. N. Kwon, and J. S. Kim, Optical evaluation of in situ crack propagation by using mechanoluminescence of sral2o4:eu2+, Dy3+,, Journal of the American Ceramic Society, vol. 98, no. 7, p.2197–2204, Mar. (2015).
DOI: 10.1111/jace.13566
Google Scholar
[2]
I. P. Sahu, D. P. Bisen, R. K. Tamrakar, K. V. R. Murthy, and M. Mohapatra, Luminescence studies on the europium doped strontium metasilicate phosphor prepared by solid-state reaction method,, Journal of Science: Advanced Materials and Devices, vol. 2, no. 1, p.59–68, Mar. (2017).
DOI: 10.1016/j.jsamd.2017.01.001
Google Scholar
[3]
I. P. Sahu, D. P. Bisen, N. Brahme, and R. K. Tamrakar, "Luminescence behavior of europium activated.
Google Scholar
[4]
strontium aluminate phosphors by solid-state reaction method," Journal of Materials Science: Materials in Electronics, vol. 27, no. 4, p.3443–3455, Dec. (2015).
DOI: 10.1007/s10854-015-4177-7
Google Scholar
[5]
Y. Imai, R. Momoda, and C. -N. Xu, Elasticoluminescence of europium-doped strontium aluminate spherical particles dispersed in polymeric matrices,, Materials Letters, vol. 61, no. 19–20, p.4124–4127, Aug. (2007).
DOI: 10.1016/j.matlet.2007.01.069
Google Scholar
[6]
L. B. Carani, V. O. Eze, C. Iwuagwu, and O. I. Okoli, Performance Analysis of Embedded Mechanoluminescence-Perovskite Self-Powered Pressure Sensor for Structural Health Monitoring,, Journal of Composites Science, vol. 4, no. 4, p.190, Dec. (2020).
DOI: 10.3390/jcs4040190
Google Scholar
[7]
M. A. S. Shohag, V. O. Eze, L. Braga Carani, and O. I. Okoli, Fully Integrated Mechanoluminescent Devices with Nanometer-Thick Perovskite Film as Self-Powered Flexible Sensor for Dynamic Pressure Sensing,, ACS Applied Nano Materials, vol. 3, no. 7, p.6749–6756, Jun. (2020).
DOI: 10.1021/acsanm.0c01168
Google Scholar
[8]
I. Bite et al., Novel method of phosphorescent strontium aluminate coating preparation on aluminum,, Materials & Design, vol. 160, p.794–802, Dec. (2018).
DOI: 10.1016/j.matdes.2018.10.021
Google Scholar
[9]
J. R. N. Gnidakouong and G. J. Yun, Dislocation density level induced divergence between stress-free afterglow and mechanoluminescence in SrAl2O4: Eu2+, Dy3+,, Ceramics International, vol. 45, no. 2, p.1794–1802, Feb. (2019).
DOI: 10.1016/j.ceramint.2018.10.066
Google Scholar
[10]
K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, Direct Observation of Crack Tip Stress Field Using the Mechanoluminescence of SrAl2O4:(Eu, Dy, Nd),, Journal of the American Ceramic Society, vol. 85, no. 3, p.712–714, Dec. (2004).
DOI: 10.1111/j.1151-2916.2002.tb00158.x
Google Scholar
[11]
T. W. Kerekes, H. You, T. Hemmatian, J. Kim, and G. J. Yun, Enhancement of mechanoluminescence sensitivity of SrAl2O4: Eu2+, Dy3+/Epoxy composites by ultrasonic curing treatment method,, Composite Interfaces, vol. 28, no. 1, p.77–99, Mar. (2020).
DOI: 10.1080/09276440.2020.1740522
Google Scholar
[12]
M. P. Anesh, S. K. H. Gulrez, A. Anis, H. Shaikh, M. E. Ali Mohsin, and S. M. AL-Zahrani, Developments in Eu+2-Doped Strontium Aluminate and Polymer/Strontium Aluminate Composite,, Advances in Polymer Technology, vol. 33, no. S1, p. n/a-n/a, Jun. (2014).
DOI: 10.1002/adv.21436
Google Scholar
[13]
K.-S. Sohn, S. Timilsina, S. P. Singh, J.-W. Lee, and J. S. Kim, A Mechanoluminescent ZnS: Cu/Rhodamine/SiO2/PDMS and Piezoresistive CNT/PDMS Hybrid Sensor: Red-Light Emission and a Standardized Strain Quantification,, ACS Applied Materials & Interfaces, vol. 8, no. 50, p.34777–34783, Dec. (2016).
DOI: 10.1021/acsami.6b12931
Google Scholar
[14]
C. Wu et al., Efficient Mechanoluminescent Elastomers for Dual‐Responsive Anticounterfeiting Device and Stretching/Strain Sensor with Multimode Sensibility,, Advanced Functional Materials, vol. 28, no. 34, p.1803168, Jun. (2018).
DOI: 10.1002/adfm.201803168
Google Scholar
[15]
M. Kimi, L. Yuliati, and M. Shamsuddin, Preparation of High Activity Ga and Cu Doped ZnS by Hydrothermal Method for Hydrogen Production under Visible Light Irradiation,, Journal of Nanomaterials, vol. 2015, p.1–9, (2015).
DOI: 10.1155/2015/195024
Google Scholar
[16]
S. J. Sajan, N. Gopakumar, P. S. Anjana, and K. Madhukumar, "Synthesis.
Google Scholar
[17]
characterization, and mechanoluminescence of europium doped Zn Ba(1−)Al2O4.
Google Scholar
[18]
(x=0, 0.4, 0.5, 0.6, 0.8, 1.0) phosphor," Journal of Luminescence, vol. 174, p.11–16, Jun. (2016).
Google Scholar
[19]
H. Lv, Z. Pan, and Y. Wang, Synthesis and mechanoluminescent property of (Eu2+, Dy3+)-co-doped strontium aluminate phosphor by soft mechanochemistry-assisted solid-state method,, Journal of Luminescence, vol. 209, p.129–140, May (2019).
DOI: 10.1016/j.jlumin.2019.01.026
Google Scholar
[20]
P. Jha and B. P. Chandra, Survey of the literature on mechanoluminescence from 1605 to 2013,, Luminescence, vol. 29, no. 8, p.977–993, Apr. (2014).
DOI: 10.1002/bio.2647
Google Scholar
[21]
A. A. Banishev and A. F. Banishev, Structure, luminescence and mechano-optical properties of strontium aluminate doped with europium and dysprosium ions,, IOP Conference Series: Materials Science and Engineering, vol. 812, p.012007, May (2020).
DOI: 10.1088/1757-899x/812/1/012007
Google Scholar
[22]
Z. Tang, F. Zhang, Z. Zhang, C. Huang, and Y. Lin, Luminescent properties of SrAl2O4: Eu, Dy material prepared by the gel method,, Journal of the European Ceramic Society, vol. 20, no. 12, p.2129–2132, Nov. (2000).
DOI: 10.1016/s0955-2219(00)00092-3
Google Scholar
[23]
S. Timilsina, J. S. Kim, J. Kim, and G.-W. Kim, Review of state-of-the-art sensor applications using mechanoluminescence microparticles,, International Journal of Precision Engineering and Manufacturing, vol. 17, no. 9, p.1237–1247, Sep. (2016).
DOI: 10.1007/s12541-016-0149-y
Google Scholar
[24]
Y. Fujio et al., Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,, International Journal of Hydrogen Energy, vol. 41, no. 2, p.1333–1340, Jan. (2016).
DOI: 10.1016/j.ijhydene.2015.10.073
Google Scholar
[25]
W. X. Wang, Y. Imai, C. N. Xu, T. Matsubara, and Y. Takao, A New Smart Damage Sensor Using Mechanoluminescence Material,, Materials Science Forum, vol. 675–677, p.1081–1084, Feb. (2011).
DOI: 10.4028/www.scientific.net/msf.675-677.1081
Google Scholar
[26]
E. Pulliam, G. Hoover, and D. Ryu, "Multifunctional Mechano-Luminescent-Optoelectronic Composites for.
Google Scholar
[27]
Self-Powered Strain Sensing," Sep. 2017, Accessed: Sep. 14, (2021).
Google Scholar
[28]
B. P. Chandra, V. K. Chandra, S. K. Mahobia, P. Jha, R. Tiwari, and B. Haldar, Real-time mechanoluminescence sensing of the amplitude and duration of impact stress,, Sensors and Actuators A: Physical, vol. 173, no. 1, p.9–16, Jan. (2012).
DOI: 10.1016/j.sna.2011.09.043
Google Scholar
[29]
A. Feng, S. Michels, A. Lamberti, and P. F. Smet, Mechanoluminescent Materials: A New Way to Analyze Stress by Light,, Proceedings, vol. 2, no. 8, p.492, Jun. (2018).
DOI: 10.3390/icem18-05422
Google Scholar
[30]
W. X. Wang, T. Matsubara, Y. Takao, Y. Imai, and C. N. Xu, Visualization of Stress Distribution Using Smart Mechanoluminescence Sensor,, Materials Science Forum, vol. 614, p.169–174, Mar. (2009).
DOI: 10.4028/www.scientific.net/msf.614.169
Google Scholar
[31]
D. Kim, Recent Developments in Lanthanide-Doped Alkaline Earth Aluminate Phosphors with Enhanced and Long-Persistent Luminescence,, Nanomaterials, vol. 11, no. 3, p.723, Mar. (2021).
DOI: 10.3390/nano11030723
Google Scholar
[32]
T. Peng, L. Huajun, H. Yang, and C. Yan, Synthesis of SrAl2O4:Eu, Dy phosphor nanometer powders by sol-gel processes and its optical properties,, Materials Chemistry and Physics, vol. 85, no. 1, p.68–72, May (2004).
DOI: 10.1016/j.matchemphys.2003.12.001
Google Scholar
[33]
M. A. Lephoto, O. M. Ntwaeaborwa, S. S. Pitale, H. C. Swart, J. R. Botha, and B. M. Mothudi, Synthesis and characterization of BaAl2O4:Eu2+ co-doped with different rare-earth ions,, Physica B: Condensed Matter, vol. 407, no. 10, p.1603–1606, May (2012).
DOI: 10.1016/j.physb.2011.09.096
Google Scholar
[34]
Characterization of Minerals, Metals, and Materials 2020," Google Books. https://books.google.co.in/books,id=PADMDwAAQBAJ&pg=PA518&lpg=PA518&dq=Mishra,+S.+B.;+ Mishra,+A.+K.;+Revaprasadu,+N.;+Hillie,+K.+T.;+Steyn,+W.+J.+v.;+Coetsee,+E.;+Swart,+H.+C.+J+Ap plPolym+Sci+2009,+112,+3347%E2%80%933354.&source=bl&ots=u3pclQodqe&sig=ACfU3U2wqYLY PWm90yxD8g4ynt2oa4VGnQ&hl=en&sa=X&ved=2ahUKEwjuhIa8ipjzAhXL6XMBHehxCnwQ6AF6BA gCEAM#v=onepage&q=Mishra%2C%20S.%20B.%3B%20Mishra%2C%20A.%20K.%3B%20Revaprasad u%2C%20N.%3B%20Hillie%2C%20K.%20T.%3B%20Steyn%2C%20W.%20J.%20v.%3B%20Coetsee% 2C%20E.%3B%20Swart%2C%20H.%20C.%20J%20ApplPolym%20Sci%202009%2C%20112%2C%203 347%E2%80%933354.&f=false.
Google Scholar
[35]
F. Clabau et al., Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+,, Chemistry of Materials, vol. 17, no. 15, p.3904–3912, Jul. (2005).
DOI: 10.1021/cm050763r
Google Scholar