[1]
J.C. Prata, A.L.P. Silva, T.R. Walker, A.C. Duarte, T. Rocha-Santos, COVID-19 Pandemic Repercussions on the Use and Management of Plastics, Environ. Sci. Technol., 54 (13) (2020), 7760-7765.
DOI: 10.1021/acs.est.0c02178
Google Scholar
[2]
P.K. Rai, J. Lee, R.J.C. Brown, K.H. Kim, Environmental fate, ecotoxicity biomarkers, and potential health effects of micro- and nano-scale plastic contamination, J. Hazard. Mater., 403 (2021), 123910.
DOI: 10.1016/j.jhazmat.2020.123910
Google Scholar
[3]
S.K. Ning, M.C. Hung, Y.H. Chang, H.P. Wan, H.T. Lee, R.F. Shih, Benefit assessment of cost, energy, and environment for biomass pyrolysis oil, J. Clean. Prod., 59 (2013), 141-149.
DOI: 10.1016/j.jclepro.2013.06.042
Google Scholar
[4]
S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy Policy, 37 (1) (2009), 181-189.
DOI: 10.1016/j.enpol.2008.08.016
Google Scholar
[5]
Q. Lu, W.Z. Li, X.F. Zhu, Overview of fuel properties of biomass fast pyrolysis oils, Energy Convers. Manag., 50 (5) (2009), 1376-1383.
DOI: 10.1016/j.enconman.2009.01.001
Google Scholar
[6]
A. Dewangan, D. Pradhan, R.K. Singh, Co-pyrolysis of sugarcane bagasse and low-density polyethylene: Influence of plastic on pyrolysis product yield, Fuel, 185 (2016), 508-516.
DOI: 10.1016/j.fuel.2016.08.011
Google Scholar
[7]
G. Özsin, A.E. Pütün, A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics, J. Clean. Prod., 205 (2018), 1127-1138.
DOI: 10.1016/j.jclepro.2018.09.134
Google Scholar
[8]
L. Fan, P. Chen, Y. Zhang, S. Liu, Y., Liu, Y. Wang, L. Dai, R. Ruan, Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality, Bioresour. Technol., 225 (2017), 199-205.
DOI: 10.1016/j.biortech.2016.11.072
Google Scholar
[9]
W. Chen, S. Shi, J. Zhang, M. Chen, X. Zhou, Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization, Energy Convers. Manag., 112 (2016), 41-48.
DOI: 10.1016/j.enconman.2016.01.005
Google Scholar
[10]
L. Zhang, Z. Bao, S. Xia, Q. Lu, K.B. Walters, Catalytic Pyrolysis of Biomass and Polymer Wastes, Catalysts, 8 (12) 2018, 659.
DOI: 10.3390/catal8120659
Google Scholar
[11]
S.D. Anuar Sharuddin, F. Abnisa, W.M.A. Wan Daud, M.K. Aroua, A review on pyrolysis of plastic wastes, Energy Convers. Manag., 115 (2016), 308-326.
DOI: 10.1016/j.enconman.2016.02.037
Google Scholar
[12]
A.K., Panda, R.K., Singh, D.K. Mishra, Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective, Renew. Sust. Energ. Rev., 14 (1) (2010), 233-248.
DOI: 10.1016/j.rser.2009.07.005
Google Scholar
[13]
J.D. Martínez, A. Veses, A.M. Mastral, R. Murillo, M.V. Navarro, N. Puy, A. Artigues, J. Bartrolí, T. García, Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel, Fuel Process. Technol., 119 (2014), 263-271.
DOI: 10.1016/j.fuproc.2013.11.015
Google Scholar
[14]
E. Önal, B.B. Uzun, A.E. Pütün, Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene, Energy Convers. Manag., 78 (2014), 704-710.
DOI: 10.1016/j.enconman.2013.11.022
Google Scholar