Investigation on Mechanical Properties of Regular and Engineered Fiber Built up Polymer Composites

Article Preview

Abstract:

Standard fibers have attracted the attentiveness of technocrats, specialists, experts, and researchers throughout the globe as elective support for fiber built up polymer composites, due to their predominant properties like high explicit strength, low weight, minimal expense, truly incredible mechanical properties, non-grating, eco-accommodating, and bio-degradable qualities. Here of view, a short survey has been completed to utilize normal strands, (for example, jute, Kenaf, pineapple, sisal, and so forth) bounteously accessible in India. Glass Fiber Reinforced Polymers are blending in with normal filaments to build Engineering and Technology applications. This paper presents an examination of the mechanical characteristics of regular fibers and hybrid fibers supported by polymer composites. Seven Sample composite covers of the various mix without alkali treatment has been prepared. The physical, Mechanical properties need to reveal for the better composition of the reinforced elements as per ASTM standard. The specimen has been prepared as per ASTM Standard for Mechanical Characterization. The tensile strength of the hybrid specimen shows maximum ultimate tensile strength 97.24Mpa with yield tensile strength is 67.11Mpa and Young’s Modulus 6673.64Mpa at maximum force of 6.56 KN. This is the highest among all configurations. From the consolidated result of flexural strength of all seven combinations, it is come to notice that, the flexural strength of the hybrid specimen composite shows maximum flexural strength 207.84 MPa. It is observed that the impact strength of the hybrid material is 42% more than Kenaf and E-glass material combination and 54% more than the Jute and E-glass material combination.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1073)

Pages:

57-66

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pıhtılı Hasim and Tosun Nihat, Investigation of the wear behaviour of a glass-fiber-reinforced composite and plain polyester resin,, Compos. Sci. Technol., vol. 62, p.367–370, (2002).

DOI: 10.1016/s0266-3538(01)00196-8

Google Scholar

[2] B. Suresha, G. Chandramohan, Siddaramaiah, P. Samapthkumaran, and S. Seetharamu, Three-body abrasive wear behaviour of carbon and glass fiber reinforced epoxy composites,, Mater. Sci. Eng. A, vol. 443, no. 1–2, p.285–291, 2007,.

DOI: 10.1016/j.msea.2006.09.016

Google Scholar

[3] S. S. Mahapatra and A. Patnaik, Study on mechanical and erosion wear behavior of hybrid composites using Taguchi experimental design,, Mater. Des., vol. 30, no. 8, p.2791–2801, 2009,.

DOI: 10.1016/j.matdes.2009.01.037

Google Scholar

[4] S. Chauhan, A. Kumar, A. Patnaik, A. Satapathy, and I. Singh, Mechanical and wear characterization of gf reinforced vinyl ester resin composites with different co-monomers,, J. Reinf. Plast. Compos., vol. 28, no. 21, p.2675–2684, 2009, doi:10.1177/ 0731684408093823.

DOI: 10.1177/0731684408093823

Google Scholar

[5] E. Lackey, J. G. Vaughan, K. Inamdar, and B. Hancock, Statistical characterization of pultruded composites with natural fiber reinforcements - Part A: Fabrication,, J. Nat. Fibers, vol. 4, no. 4, p.73–87, 2007,.

DOI: 10.1080/15440470801894057

Google Scholar

[6] D. N. Saheb and J. P. Jog, 0Deec52E7C9B24B713000000.Pdf,, J. Adv. Polym. Technol., vol. 18, no. 4, p.351–363, 1999, [Online]. Available: https://www.researchgate.net/ profile/Jyoti_Jog/publication/227941520_Natural_fiber_polymer_composites_A_Review/links/0deec52e7c9b24b713000000.pdf.

DOI: 10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x

Google Scholar

[7] X. Li, L. G. Tabil, and S. Panigrahi, Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review,, J. Polym. Environ., vol. 15, no. 1, p.25–33, Feb. 2007,.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[8] K. Jarukumjorn and N. Suppakarn, Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites,, Compos. Part B Eng., vol. 40, no. 7, p.623–627, 2009,.

DOI: 10.1016/j.compositesb.2009.04.007

Google Scholar

[9] F. de A. Silva, R. D. T. Filho, J. de A. M. Filho, and E. de M. R. Fairbairn, Physical and mechanical properties of durable sisal fiber-cement composites,, Constr. Build. Mater., vol. 24, no. 5, p.777–785, 2010,.

DOI: 10.1016/j.conbuildmat.2009.10.030

Google Scholar

[10] M. Ramesh, K. Palanikumar, and K. H. Reddy, Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites,, Procedia Eng., vol. 51, no. NUiCONE 2012, p.745–750, 2013,.

DOI: 10.1016/j.proeng.2013.01.106

Google Scholar

[11] R. Gujjala, S. Ojha, S. K. Acharya, and S. K. Pal, Mechanical properties of woven jute-glass hybrid-reinforced epoxy composite,, J. Compos. Mater., vol. 48, no. 28, p.3445–3455, 2014,.

DOI: 10.1177/0021998313501924

Google Scholar

[12] G. Raghavendra, Mechanical and Tribological Behavior of Nanofiller Reinforced Polymer a Thesis Submitted in Partial Fulfilment of Mechanical and Tribological Behavior of Nanofiller Reinforced Polymer a Thesis Submitted in Partial Fulfilment of,, (2014).

Google Scholar

[13] R. Rahman and S. Zhafer Firdaus Syed Putra, Tensile properties of natural and synthetic fiber-reinforced polymer composites,, in Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Elsevier, 2019, p.81–102.

DOI: 10.1016/b978-0-08-102292-4.00005-9

Google Scholar

[14] M. M. Davoodi, S. M. Sapuan, D. Ahmad, A. Ali, A. Khalina, and M. Jonoobi, Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam,, Mater. Des., vol. 31, no. 10, p.4927–4932, 2010,.

DOI: 10.1016/j.matdes.2010.05.021

Google Scholar

[15] P. Noorunnisa Khanam, M. Mohan Reddy, K. Raghu, K. John, and S. Venkata Naidu, Tensile, flexural and compressive properties of sisal/silk hybrid composites,, J. Reinf. Plast. Compos., vol. 26, no. 10, p.1065–1070, 2007,.

DOI: 10.1177/0731684407079347

Google Scholar

[16] S. Mishra et al., Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites,, Compos. Sci. Technol., vol. 63, no. 10, p.1377–1385, 2003,.

DOI: 10.1016/s0266-3538(03)00084-8

Google Scholar

[17] C. Pavithran, P. S. Mukherjee, and M. Brahmakumar, Coir-Glass Intermingled Fibre Hybrid Composites,, J. Reinf. Plast. Compos., vol. 10, no. 1, p.91–101, 1991,.

DOI: 10.1177/073168449101000106

Google Scholar

[18] Mohan And Kishore, Jute and Glass Sandwich, vol. 4, no. April, p.186–194, (1985).

Google Scholar

[19] kalaprasad, from the SAGE Social Science Collections. All Rights,, Hisp. J. Behav. Sci., vol. 9, no. 2, p.183–205, 2001, [Online]. Available: http://hjb.sagepub.com.proxy. lib.umich.edu/ content/ 9/2/183.full.pdf+html.

Google Scholar

[20] G. Marom, S. Fischer, F. R. Tuler, and H. D. Wagner, Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour,, J. Mater. Sci., vol. 13, no. 7, p.1419–1426, 1978,.

DOI: 10.1007/bf00553194

Google Scholar

[21] M. M. Thwe and K. Liao, Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite,, J. Mater. Sci. Lett., vol. 19, no. 20, p.1873–1876, 2000,.

Google Scholar

[22] R. Bhoopathi, C. Deepa, G. Sasikala, and M. Ramesh, Experimental Investigation on Mechanical Properties of Hemp-Banana-Glass Fiber Reinforced Composites,, Appl. Mech. Mater., vol. 766–767, no. June 2015, p.167–172, 2015,.

DOI: 10.4028/www.scientific.net/amm.766-767.167

Google Scholar

[23] M. A. Al-Shammari, Experimental and Numerical Investigation of Hyper Composite Plate Structure Under Thermal and Mechanical Loadings,, Univ. Baghdad Eng. J., vol. 23, no. 8, p.56–69, 2017, [Online]. Available: https://www.researchgate.net/publication/ 319653469_Experimental_and_Numerical_Investigation_of_Hyper_Composite_Plate_Structure_Under_Thermal_and_Mechanical_Loadings.

Google Scholar

[24] Y. Basavaraj and H. Raghavendra, Experimental and Numerical Study of the Influence of Volume Fraction on Tensile and Flexural Strength of E-Glass Epoxy Cross Ply Laminates,, Int. J. Mech. Ind. Technol., vol. 2, no. 1, p.39–44, (2014).

Google Scholar

[25] I. S. Aji, E. S. Zainudin, S. M. Sapuan, A. Khalina, and M. D. Khairul, Study of Hybridized Kenaf/PALF-Reinforced HDPE Composites by Dynamic Mechanical Analysis,, Polym. - Plast. Technol. Eng., 2012,.

DOI: 10.1080/03602559.2011.618166

Google Scholar

[26] A. Konyukhov, Modelling of cutting with arbitrary kinematics. Special study of contact algorithms,, no. July, p.108, 2018,.

Google Scholar

[27] R. E. Izzaty, B. Astuti, and N. Cholimah, NOTCHED BAR TEST,, Angew. Chemie Int. Ed. 6(11), 951–952., p.5–24, (1967).

Google Scholar