The Effect of Filler and Fiber Type on the Behavior of Body Armor Composite

Article Preview

Abstract:

This research investigates the behavior of different reinforcement materials on the mechanical and ballistic properties of a hybrid composite, where two types of reinforcement in different combinations based on the Taguchi technique. Two different methods can be used to analyze different properties, bigger is better when it comes to the impact strength and hardness of the composite making the specimen that containing the highest value of impact strength belonged to (22.5% Kevlar, 30% E-glass, 1% Silicon carbide and 2% Titanium carbide)combination, while the highest value of Hardness came from (30% Kevlar, 15% E-glass, 1% Silicon carbide and 1% Titanium carbide). While smaller is better when we refer to the ballistic penetration depth under high speed impact, and the smallest depth of the backface signature came from (15% Kevlar, 15% E-glass, 2% Silicon carbide and 2% Titanium carbide) combination.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1077)

Pages:

69-77

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.M.K. Hua-Tay Lin, (2009).

Google Scholar

[2] G. Gopinath, J.Q. Zheng, and R.C. Batra, Compos. Struct. 94, 2690 (2012).

Google Scholar

[3] K. Rassiah, M.M.H.M. Ahmad, A. Ali, A. Halid, and S. Nagapan, J. Polym. Environ. 0, 0 (2017).

Google Scholar

[4] A. Ali, R. Adawiyah, K. Rassiah, W. Kuan, F. Ari, F. Othman, M. Shauqi, M.K. Faidzi, M.F. Abdullah, and M.M.H.M. Ahmad, 15, 282 (2019).

Google Scholar

[5] A. Camposo, F. Salgado, D. Assis, C. Garcia, M. Souza, L. Cristyne, H. Alonso, C. Lopera, and S. Neves, Integr. Med. Res. 8, 4221 (2019).

Google Scholar

[6] A.K. Bandaru, V. V Chavan, S. Ahmad, R. Alagirusamy, and N. Bhatnagar, Int. J. Impact Eng. (2015).

Google Scholar

[7] A.B. Dresch, J. Venturini, S. Arcaro, O.R.K. Montedo, and C.P. Bergmann, Ceram. Int. 47, 8743 (2021).

Google Scholar

[8] B. J.C. Farias-Aguilar a, b, M.J. Ramı´rez-Moreno a, D.M. Gonzalez-Garcı´a a and H.B.-R. a L. T_ellez-Jurado a,*, J. Mater. Res. Technol. 12, 1606 (2021).

Google Scholar

[9] M.S. Abed and Z.A. Jawad, 187 (2022).

Google Scholar

[10] Z. Chen, Y. Xu, M. Li, B. Li, W. Song, L. Xiao, and Y. Cheng, (2022).

Google Scholar

[11] S.S. Mahapatra and A. Patnaik, Mater. Des. 30, 2791 (2009).

Google Scholar

[12] S.Basavarajappa and G.Chandramohan, 材料科学技术:英文版 21, 845 (2005).

Google Scholar

[13] National Institute of Justice, Technol. Assess. Progr. NIJ Standard 0101.02 (1985).

Google Scholar

[14] B.K. Prasad, S. Das, A.K. Jha, O.P. Modi, R. Dasgupta, and A.H. Yegneswaran, Compos. Part A Appl. Sci. Manuf. 28, 301 (1997).

Google Scholar

[15] W.H. Yang and Y.S. Tarng, J. Mater. Process. Technol. 84, 122 (1998).

Google Scholar

[16] I. Engineering, J. Press. Vessel Technol. 336 (1993).

Google Scholar

[17] I.R.K.A.C. Eng, F. Mahel, M. Electromechanical, S.S. Obayes, and E. Eng, 2017 Int. Conf. Control. Autom. Diagnosis, ICCAD 2017 439 (2017).

Google Scholar

[18] S.A.S. Obayes, I.R.K. Al-Saedi, and F.M. Mohammed, Proc. - 2017 UKSim-AMSS 19th Int. Conf. Model. Simulation, UKSim 2017 69 (2018).

DOI: 10.1109/uksim.2017.20

Google Scholar

[19] S. Sathish, T. Ganapathy, and T. Bhoopathy, Appl. Mech. Mater. 592–594, 339 (2014).

Google Scholar

[20] R.D. Morgan, SAGE Encycl. Crim. Psychol. (2008).

Google Scholar

[21] K. Sarkar and R.K. Roy, (2010).

Google Scholar