[1]
Garrett J L, Leite M S, Munday J N. Multiscale Functional Imaging of Interfaces through Atomic Force Microscopy Using Harmonic Mixing. ACS Applied Materials&Interfaces, 10(34):50-59, 2018. https://doi.org/10.1021/acsami.8b08097.
DOI: 10.1021/acsami.8b08097
Google Scholar
[2]
Koumoulos E P, Tofail S A M, Silien C, et al. Metrology and nano-mechanical tests for nano-manufacturing and nano-bio interface: Challenges & future perspectives. Materials & Design, 137:446-462, 2018. https://doi.org/10.1016/j.matdes.2017.10.035.
DOI: 10.1016/j.matdes.2017.10.035
Google Scholar
[3]
Zeng W., Wu S. ,Pang Li., Chen H, Hu J., Sun Y., Chen Z. Research on Ultra Violet (UV) aging depth of asphalts. Construction and Building Materials, 160(Jan.30):620-627, 2018. https://doi.org/10.1016/j.conbuildmat.2017.11.047.
DOI: 10.1016/j.conbuildmat.2017.11.047
Google Scholar
[4]
WANG Q. Evolution of the Structure and Properties of Crumb Rubber Modified Asphalt in Aging Process. Shanghai Institute of Technology, (2016).
Google Scholar
[5]
WANG Q, YUAN Y, OUYANG C F, et al. Research on Aging of Waste Rubber Modified Asphalt. Polymer Bulletin, (06):19-28, 2015. https://doi.org/10.14028/j.cnki. 1003-3726.2015.06.003.
Google Scholar
[6]
Xiao P, Wu M F, Jiang D A. Study on Properties of Ultraviolet Aged Rubber Asphalt. Journal of Nanjing University of Aeronautics & Astronautics, 45(01):152-156, 2013. https://doi.org/10.16356/j.1005-2615.2013.01.025.
Google Scholar
[7]
Liu HB, Zhang ZQ, Xie J.Q., Gui ZJ, Li NQ, Xu YF, Analysis of OMMT strengthened UV aging-resistance of Sasobit/SBS modified asphalt: Its preparation, characterization and mechanism. Journal of Cleaner Production, 315(Sep.15):128-139, 2021. https://doi.org/10.1016/j.jclepro.2021.128139.
DOI: 10.1016/j.jclepro.2021.128139
Google Scholar
[8]
Mull M A. Stuart K. Yehia A. Fracture Resistance Characterization of Chemically Modified Crumb Rubber Asphalt Pavement. Journal of materials Science, 37(3):557-566, 2002. https://doi.org/10.1023/A:1013721708572.
Google Scholar
[9]
Guo S, Zhang Y, Tang H. Investigation of relationship between accelerated ultraviolet radiation aging in laboratory and weathering aging for asphalt binder. International Journal of Pavement Research and Technology, 14, 466–472, 2020. https://doi.org/10.1007/s42947-020-0158-1.
DOI: 10.1007/s42947-020-0158-1
Google Scholar
[10]
XAIO M, FAN L. Ultraviolet aging mechanism of asphalt molecular based on microscopic simulation. Construction and Building Materials, 319(FEB.14):126-157, 2022. https://doi.org/10.1016/j.conbuildmat.2021.126157.
DOI: 10.1016/j.conbuildmat.2021.126157
Google Scholar
[11]
XU L, LI Z G, ZHANG Q CH, et al. On the Effect of the UV-Aging on the Performance of the CTOR Rubber Asphalt. Traffic Engineering and Technology for National Defence, 15(05):4-8, 2017. https://doi.org/10.13219/j.gjgyat.2017.05.002.
Google Scholar
[12]
Li J, Chen Z, Xiao F, et al. Surface activation of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Resources Conservation and Recycling, 169:105518, 2021. https://doi.org/10.1016/j.resconrec.2021.105518.
DOI: 10.1016/j.resconrec.2021.105518
Google Scholar
[13]
SONG C Z, MA Q., YANG C., et al. Research on Technical Properties of High Viscosity Rubberized Asphalt Modified with Compound. Road Machinery & Construction Mechanization,37(Z1):17-22+27, 2020. https://doi.org/10.1016/j.sna.2007.01.007.
Google Scholar