[1]
A.I. Batyshev, Preparations in mechanical engineering, Manual, M: MGOU publishing house, (2004) 189.
Google Scholar
[2]
R.E. Gliner, Tekhnologiya of superficial hardening of metals by heat and plastic treatment: studies. grant for students of higher education institutions, Nizhny Novgorod: NGTU, (2008) 249.
Google Scholar
[3]
A.V. Kolomeichenko, Restoration of heavily worn parts from aluminum alloy, Repair, refurbishment, modernization. 4 (2002) 29–30.
Google Scholar
[4]
V.V. Kurchatkin, N.F. Telnov, K.A. Achkasov, Reliability and repair of cars, Moscow, 2000.
Google Scholar
[5]
V.I. Nikitin, and K.V. Nikitin, Heredity in cast alloys, Prod. the 2nd, reslave. and additional, M: Mechanical engineering. 1 (2005) 476.
Google Scholar
[6]
B.V. Namakonov, Production environmental friendliness of products, Bulletin of mechanical engineering. 5 (2001) 68-71.
Google Scholar
[7]
N.T. Sorokin, Trucks of Russia, Needs and opportunities, Automotive industry. 4 (2002) 11-13.
Google Scholar
[8]
A.G. Suslov, Quality of a blanket of details of cars, Moscow, 2000.
Google Scholar
[9]
I.A. Shveyov, A.I. Shveyov, E.I. Shveyova, T.V. Shveyova, R.V. Kazantsev, The study of hardness of welded joints of parts in the automotive industry, International Journal of Applied Engineering Research. Vol. 12, 6 (2017) 912-917.
DOI: 10.13005/bbra/2060
Google Scholar
[10]
I.A. Shveyov, A.I. Shveyov, V.I. Astashchenko, T.V. Shveyova, High Level Forming of Properties in Steel Products. World Applied Sciences Journal. 24(9) (2013) 1148-1150.
DOI: 10.4028/www.scientific.net/msf.989.62
Google Scholar
[11]
A.M. Edelson, Application of metallization for restoration of worn-out details of cars, Moscow, 1990.
Google Scholar
[12]
Ma. Kus, T. Y. Alic, C. Kirbiyik, C. Baslak, K.Kara and D. A. Kara, Synthesis of Nanoparticles, Micro and Nano Technologies. (2018) 392-429.
DOI: 10.1016/b978-0-12-813351-4.00025-0
Google Scholar
[13]
E.C. Okress, D.M. Wroughton, G. Comenetz, P.H. Brace, and J.C.R. Kelly, Electromagnetic Levitation of Solid and Molten Metals, Journal of Applied Physics. 23 (1952) 545.
DOI: 10.1063/1.1702249
Google Scholar
[14]
S.I. Bakhtiyarov and D.A. Siginer, Electromagnetic Levitation Part I: Theoretical and Experimental Considerations, Tech Science Press. 5 (2008) 99-112.
Google Scholar
[15]
S.I. Bakhtiyarov and D.A. Siginer, Electromagnetic Levitation Part III: Thermophysical Property Measurements in Microgravity, Tech Science Press. 4 (2009) 112.
Google Scholar
[16]
W.K. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A. Rulison, and R.E. Spjutb, An electrostatic levitator for high‐temperature containerless materials processing in 1‐g, Review of Scientific Instruments. 64 (1993) 2961-2970.
DOI: 10.1063/1.1144475
Google Scholar
[17]
T. Tsukada, H. Fukuyama, and H. Kobatake, Determination of thermal conductivity and emissivity of electromagnetically levitated high-temperature droplet based on the periodic laser-heating method: Theory, International Journal of Heat and Mass Transfer. 50 (2007) 3054-3061.
DOI: 10.1016/j.ijheatmasstransfer.2006.12.026
Google Scholar
[18]
H. Gao, Z. Zhang, Y. Lai, J. Li, and Y. Liu, Structure characterization and electrochemical properties of new lithium salt LiODFB for electrolyte of lithium ion batteries, Journal of Central South University of Technology. 15 (2008) 830-834.
DOI: 10.1007/s11771-008-0153-1
Google Scholar
[19]
S. Chen, Y. Chen, Y.J. Tang, B.C. Luo, Z. Yi, J.J. Wei, and W.G. Sun, Synthesis and characterization of FeAl nanoparticles by flow-levitation method, Journal of Central South University. 20 (2013) 845-50.
DOI: 10.1007/s11771-013-1556-1
Google Scholar
[20]
O.Yu. Pikoul, L.V. Alekseeva, I.V. Povh, V.I. Stroganov, K.A. Rudoy, E.V. Tolstov, V.V. Krishtop, Optical system features for observation of conoscope figures of large sizes, Journal of Instrument Engineering. 47 (2004) 53-55.
Google Scholar
[21]
O.Y. Pikoul, Determination of optical sign of a crystal by conoscopic method, J. Appl. Cryst. 43 (2010) 949-954.
DOI: 10.1107/s0021889810022375
Google Scholar
[22]
N.V. Sidorov, A.A. Kruk, O.Y. Pikoul, M.N. Palatnikov, N.A. Teplyakova, A.A. Yanichev, O.V. Makarova, Integrated research of structural and optical homogeneities of the lithium niobate crystal with low photorefractive effect, Optik. 126 (2015) 1081-1089.
DOI: 10.1016/j.ijleo.2015.03.018
Google Scholar
[23]
O.Y. Pikoul, N.V. Sidorov, N.A. Teplyakova, M.N. Palatnikov, The laser conoscopy of lithium niobate crystals of different composition, Proc. SPIE Aisa-Pacific Conference on Fundamental Problems of Opto- and Microelectronics. (2016) 101761R.
DOI: 10.1117/12.2268148
Google Scholar
[24]
F.E. Veiras, G.Pérez, M.T. Garea, L.I. Perez, Characterization of uniaxial crystals through the study of fringepatterns, J. Phys.: Conf. Ser. 274 (2011) 012030.
DOI: 10.1088/1742-6596/274/1/012030
Google Scholar
[25]
A.I. Kolesnikov, R.M. Grechishkin, S.A. Tretiakov, V.Ya. Molchanov, A.I. Ivanova, E.I. Kaplunova, E.Yu. Vorontsova, Laser conoscopy of large-sized optical crystals, IOP Conf. Series: Materials Science and Engineering. 49 (2013) 012037.
DOI: 10.1088/1757-899x/49/1/012037
Google Scholar
[26]
A. Bajor, L. Salbut, A. Szwedowski, Imaging conoscope for investigation of optical inhomogeneity in large boules of uniaxial crystals, Review of scientific instruments. 69 3 (1998) 1476-1487.
DOI: 10.1063/1.1148783
Google Scholar
[27]
F.E. Veiras, M.T. Garea, L.I. Perez, Wide angle conoscopic interference patterns in uniaxial crystals, Appl. Opt. 51 (2012) 3081-3090.
DOI: 10.1364/ao.51.003081
Google Scholar
[28]
P. Wang, Visualizing the conoscopic isochromatic interference fringes in anisotropic crystals by spinning polarizer and analyzer, Opt. Lett. 37 (2012) 4392-4394.
DOI: 10.1364/ol.37.004392
Google Scholar
[29]
L. Montalto, N. Paone, L. Scalise, D. Rinaldi, A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging, Review of scientific instruments. 86 (2015) 063102.
DOI: 10.1063/1.4921870
Google Scholar
[30]
M. Palatnikov, O. Pikoul, N. Sidorov, O. Makarova, K. Bormanis, Conoscopic studies of optical homogeneity of the LiNbO3:Mg crystals, Ferroelectrics. 436 (2012) 19-28.
DOI: 10.1080/10584587.2012.730953
Google Scholar