Restoration of Parts of the Gas Distribution Mechanism of Cars in Mechanical Engineering

Article Preview

Abstract:

Since the end part of the valve of the gas distribution mechanism is subjected to not only wear but also fatigue painting during operation of the car, this article proposes to remove the worn out layer of cast iron in several ways to avoid problems of renovation of parts of the gas distribution mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1084)

Pages:

73-78

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.I. Batyshev, Preparations in mechanical engineering, Manual, M: MGOU publishing house, (2004) 189.

Google Scholar

[2] R.E. Gliner, Tekhnologiya of superficial hardening of metals by heat and plastic treatment: studies. grant for students of higher education institutions, Nizhny Novgorod: NGTU, (2008) 249.

Google Scholar

[3] A.V. Kolomeichenko, Restoration of heavily worn parts from aluminum alloy, Repair, refurbishment, modernization. 4 (2002) 29–30.

Google Scholar

[4] V.V. Kurchatkin, N.F. Telnov, K.A. Achkasov, Reliability and repair of cars, Moscow, 2000.

Google Scholar

[5] V.I. Nikitin, and K.V. Nikitin, Heredity in cast alloys, Prod. the 2nd, reslave. and additional, M: Mechanical engineering. 1 (2005) 476.

Google Scholar

[6] B.V. Namakonov, Production environmental friendliness of products, Bulletin of mechanical engineering. 5 (2001) 68-71.

Google Scholar

[7] N.T. Sorokin, Trucks of Russia, Needs and opportunities, Automotive industry. 4 (2002) 11-13.

Google Scholar

[8] A.G. Suslov, Quality of a blanket of details of cars, Moscow, 2000.

Google Scholar

[9] I.A. Shveyov, A.I. Shveyov, E.I. Shveyova, T.V. Shveyova, R.V. Kazantsev, The study of hardness of welded joints of parts in the automotive industry, International Journal of Applied Engineering Research. Vol. 12, 6 (2017) 912-917.

DOI: 10.13005/bbra/2060

Google Scholar

[10] I.A. Shveyov, A.I. Shveyov, V.I. Astashchenko, T.V. Shveyova, High Level Forming of Properties in Steel Products. World Applied Sciences Journal. 24(9) (2013) 1148-1150.

DOI: 10.4028/www.scientific.net/msf.989.62

Google Scholar

[11] A.M. Edelson, Application of metallization for restoration of worn-out details of cars, Moscow, 1990.

Google Scholar

[12] Ma. Kus, T. Y. Alic, C. Kirbiyik, C. Baslak, K.Kara and D. A. Kara, Synthesis of Nanoparticles, Micro and Nano Technologies. (2018) 392-429.

DOI: 10.1016/b978-0-12-813351-4.00025-0

Google Scholar

[13] E.C. Okress, D.M. Wroughton, G. Comenetz, P.H. Brace, and J.C.R. Kelly, Electromagnetic Levitation of Solid and Molten Metals, Journal of Applied Physics. 23 (1952) 545.

DOI: 10.1063/1.1702249

Google Scholar

[14] S.I. Bakhtiyarov and D.A. Siginer, Electromagnetic Levitation Part I: Theoretical and Experimental Considerations, Tech Science Press. 5 (2008) 99-112.

Google Scholar

[15] S.I. Bakhtiyarov and D.A. Siginer, Electromagnetic Levitation Part III: Thermophysical Property Measurements in Microgravity, Tech Science Press. 4 (2009) 112.

Google Scholar

[16] W.K. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A. Rulison, and R.E. Spjutb, An electrostatic levitator for high‐temperature containerless materials processing in 1‐g, Review of Scientific Instruments. 64 (1993) 2961-2970.

DOI: 10.1063/1.1144475

Google Scholar

[17] T. Tsukada, H. Fukuyama, and H. Kobatake, Determination of thermal conductivity and emissivity of electromagnetically levitated high-temperature droplet based on the periodic laser-heating method: Theory, International Journal of Heat and Mass Transfer. 50 (2007) 3054-3061.

DOI: 10.1016/j.ijheatmasstransfer.2006.12.026

Google Scholar

[18] H. Gao, Z. Zhang, Y. Lai, J. Li, and Y. Liu, Structure characterization and electrochemical properties of new lithium salt LiODFB for electrolyte of lithium ion batteries, Journal of Central South University of Technology. 15 (2008) 830-834.

DOI: 10.1007/s11771-008-0153-1

Google Scholar

[19] S. Chen, Y. Chen, Y.J. Tang, B.C. Luo, Z. Yi, J.J. Wei, and W.G. Sun, Synthesis and characterization of FeAl nanoparticles by flow-levitation method, Journal of Central South University. 20 (2013) 845-50.

DOI: 10.1007/s11771-013-1556-1

Google Scholar

[20] O.Yu. Pikoul, L.V. Alekseeva, I.V. Povh, V.I. Stroganov, K.A. Rudoy, E.V. Tolstov, V.V. Krishtop, Optical system features for observation of conoscope figures of large sizes, Journal of Instrument Engineering. 47 (2004) 53-55.

Google Scholar

[21] O.Y. Pikoul, Determination of optical sign of a crystal by conoscopic method, J. Appl. Cryst. 43 (2010) 949-954.

DOI: 10.1107/s0021889810022375

Google Scholar

[22] N.V. Sidorov, A.A. Kruk, O.Y. Pikoul, M.N. Palatnikov, N.A. Teplyakova, A.A. Yanichev, O.V. Makarova, Integrated research of structural and optical homogeneities of the lithium niobate crystal with low photorefractive effect, Optik. 126 (2015) 1081-1089.

DOI: 10.1016/j.ijleo.2015.03.018

Google Scholar

[23] O.Y. Pikoul, N.V. Sidorov, N.A. Teplyakova, M.N. Palatnikov, The laser conoscopy of lithium niobate crystals of different composition, Proc. SPIE Aisa-Pacific Conference on Fundamental Problems of Opto- and Microelectronics. (2016) 101761R.

DOI: 10.1117/12.2268148

Google Scholar

[24] F.E. Veiras, G.Pérez, M.T. Garea, L.I. Perez, Characterization of uniaxial crystals through the study of fringepatterns, J. Phys.: Conf. Ser. 274 (2011) 012030.

DOI: 10.1088/1742-6596/274/1/012030

Google Scholar

[25] A.I. Kolesnikov, R.M. Grechishkin, S.A. Tretiakov, V.Ya. Molchanov, A.I. Ivanova, E.I. Kaplunova, E.Yu. Vorontsova, Laser conoscopy of large-sized optical crystals, IOP Conf. Series: Materials Science and Engineering. 49 (2013) 012037.

DOI: 10.1088/1757-899x/49/1/012037

Google Scholar

[26] A. Bajor, L. Salbut, A. Szwedowski, Imaging conoscope for investigation of optical inhomogeneity in large boules of uniaxial crystals, Review of scientific instruments. 69 3 (1998) 1476-1487.

DOI: 10.1063/1.1148783

Google Scholar

[27] F.E. Veiras, M.T. Garea, L.I. Perez, Wide angle conoscopic interference patterns in uniaxial crystals, Appl. Opt. 51 (2012) 3081-3090.

DOI: 10.1364/ao.51.003081

Google Scholar

[28] P. Wang, Visualizing the conoscopic isochromatic interference fringes in anisotropic crystals by spinning polarizer and analyzer, Opt. Lett. 37 (2012) 4392-4394.

DOI: 10.1364/ol.37.004392

Google Scholar

[29] L. Montalto, N. Paone, L. Scalise, D. Rinaldi, A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging, Review of scientific instruments. 86 (2015) 063102.

DOI: 10.1063/1.4921870

Google Scholar

[30] M. Palatnikov, O. Pikoul, N. Sidorov, O. Makarova, K. Bormanis, Conoscopic studies of optical homogeneity of the LiNbO3:Mg crystals, Ferroelectrics. 436 (2012) 19-28.

DOI: 10.1080/10584587.2012.730953

Google Scholar