[1]
S.A. Kalogirou, Progress in Energy and Combustion Science. 31 (2005) 242–281.
Google Scholar
[2]
H. Fakharian, H. Ganji and A. Naderifar, Journal of Environmental Chemical Engineering. 5 (2017) 4269–4273.
Google Scholar
[3]
H. Xu, M.N. Khan, C.J. Peters, E.D. Sloan and C.A. Koh, Journal of Chemical & Engineering Data. 63 (2018) 1081–1087.
Google Scholar
[4]
E.D. Sloan and C. Koh, Clathrate Hydrates of Natural Gases, Third Edition Chemical Industries, Taylor & Francis (2007).
Google Scholar
[5]
T. Yagasaki, M. Matsumoto, Y. Andoh, S. Okazaki and H. Tanaka, The Journal of Physical Chemistry B. 118 (2014) 11797–11804.
DOI: 10.1021/jp507978u
Google Scholar
[6]
Y. Chen, C. Chen and A.K. Sum, Crystal Growth & Design. 21 (2021) 960–973.
Google Scholar
[7]
P. Englezos, Industrial & Engineering Chemistry Research. 31 (1992) 2232–2237.
Google Scholar
[8]
Z. Duan and R. Sun, American Mineralogist. 91 (2006) 1346–1354.
Google Scholar
[9]
V.R. Belosludov, O.S. Subbotin, D.S. Krupskii, R.V. Belosludov, Y. Kawazoe and J. Kudoh, Mat. Trans. 48 (2007) 704–710.
DOI: 10.2320/matertrans.48.704
Google Scholar
[10]
O.S. Subbotin, T.P. Adamova, R.V. Belosludov, H. Mizuseki, Y. Kawazoe, J. Kudoh, P.M. Rodger and V.R. Belosludov, J. Chem. Phys. 131 (2009) 114507.
DOI: 10.1063/1.3212965
Google Scholar
[11]
R.K. Zhdanov, K.V. Gets, R.V. Belosludov, O.S. Subbotin, Y.Y. Bozhko and V.R. Belosludov, Fluid Phase Equilib. 434 (2017) 87–92.
DOI: 10.1016/j.fluid.2016.11.030
Google Scholar
[12]
R.V. Belosludov, Y.Y. Bozhko, R.K. Zhdanov, O.S. Subbotin, Y. Kawazoe and V.R. Belosludov, Fluid Phase Equilibria, special Issue: Gas Hydrates and Semiclathrate Hydrates. 413 (2016) 220–228.
DOI: 10.1016/j.fluid.2016.03.011
Google Scholar
[13]
R. Zhdanov, O. Subbotin, L.J. Chen and V. Belosludov, Int. J. Comput. Mat. Sci. Eng. 1 (2012) 1250017.
Google Scholar
[14]
M.D. Jager, A.L. Ballard and E.D. Sloan, Fluid Phase Equilib. 211 (2003) 85–107.
Google Scholar
[15]
T.C.W. Mak and R.K. McMullan, J. Chem. Phys. 42 (1965) 2732–2737.
Google Scholar
[16]
J.D. Bernal and R.H. Fowler, J. Chem. Phys. 1 (1933) 515–548.
Google Scholar
[17]
L.S. Tee, S. Gotoh and W.E. Stewart, Industrial & Engineering Chemistry Fundamentals. 5 (1966) 356–363.
Google Scholar
[18]
S. Plimpton, Journal of Computational Physics. 117 (1995) 1–19.
Google Scholar
[19]
S. Nosé, Molecular Physics. 52 (1984) 255–268.
Google Scholar
[20]
W.G. Hoover, Phys. Rev. A 31(3) (1985) 1695–1697.
Google Scholar
[21]
D. Frenkel, Molecular Dynamics Simulation of Statistical - Mechanical Systems, ed Giccotti G and Hoover W G, Amsterdam: North-Holland, 1986, p.151.
Google Scholar
[22]
R.K. Zhdanov, T.P. Adamova, O.S. Subbotin, A.A. Pomeranskii, V.R. Belosludov, V.R. Dontsov and V.E. Nakoryakov, Journal of Engineering Thermophysics. 19 (2010) 282–288.
DOI: 10.1134/s1810232810040041
Google Scholar
[23]
W.M. Deaton and E.M. Frost Jr, Gas hydrates and their relation to the operation of natural-gas pipe lines, American Gas Association (1946).
Google Scholar
[24]
H. Kubota, K. Shimizu, Y. Tanaka and T. Makita, Journal of Chemical Engineering of Japan. 17 (1984) 423–429.
Google Scholar
[25]
A.H. Mohammadi, W. Afzal and D. Richon, The Journal of Chemical Thermodynamics. 40 (2008) 1693–1697.
Google Scholar
[26]
H.-Q. He, Y.-W. Chang, W.-M. Xu, Study on the Aromatic Transesterification Reaction Catalyzed by Phosphotungstic Acid, Lett. Org. Chem. 12 (2015) 280-282.
DOI: 10.2174/1570178612666150115235650
Google Scholar
[27]
J.S. Ruso, N. Rajendiran, R.S. Kumaran, Metal-free synthesis of aryl esters by coupling aryl carboxylic acids and aryl boronic acids, Tetrahedron Lett. 55 (2014) 2345-2347.
DOI: 10.1016/j.tetlet.2014.02.079
Google Scholar
[28]
S.S. Mahajan, B.B. Idage, N.N. Chavan, S. Sivaram, Aromatic polyesters via transesterification of dimethylterephthalate/isophthalate with bisphenol-A, J. Appl. Polym. Sci. 61 (1996) 2297-2304.
DOI: 10.1002/(sici)1097-4628(19960926)61:13<2297::aid-app8>3.0.co;2-7
Google Scholar
[29]
C. Berti, V. Bonora, F. Pilati, M. Fiorini, Synthesis of aromatic polyesters based on bisphenol A and phthalic acids. A new preparative process, Macromolecules 24 (1991) 5269-5272.
DOI: 10.1021/ma00019a007
Google Scholar
[30]
T.-S. Chung, S.-X. Cheng, Effect of catalysts on thin-film polymerization of thermotropic liquid crystalline copolyester, J. Polym. Sci. Pol. Chem. 38 (2000) 1257-1269.
DOI: 10.1002/(sici)1099-0518(20000415)38:8<1257::aid-pola9>3.0.co;2-9
Google Scholar
[31]
A.I. Akhmetshina, E.K. Ignat'eva, T.R. Deberdeev, L.K. Karimova, Yu.N. Yuminova, A.A. Berlin, R.Ya. Deberdeev, Thermotropic Liquid Crystalline Polyesters with Mesogenic Fragments Based on the p-Oxybenzoate Unit, Polym. Sci. Ser. D 12 (2019) 427–434.
DOI: 10.1134/s1995421219040026
Google Scholar
[32]
J.Y. Kim, Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites, Materials 2 (2009) 1955-1974.
DOI: 10.3390/ma2041955
Google Scholar
[33]
S. Saikrasun, O. Wongkalasin, Thermal decomposition kinetics of thermotropic liquid crystalline p-hydroxy benzoic acid/poly(ethylene terephthalate) copolyester, Polymer Degradation and Stability 88 (2005) 300-308.
DOI: 10.1016/j.polymdegradstab.2004.11.004
Google Scholar
[34]
J.Y. Kim, S.H. Kim, In Situ fibril formation of thermotropic liquid crystal polymer in polyesters blends, J. Polym. Sci. Pol. Phys. 43 (2005) 3600-3610.
DOI: 10.1002/polb.20626
Google Scholar
[35]
E. Fekete, E. Földes, B. Pukánszky, Effect of molecular interactions on the miscibility and structure of polymer blends, Eur. Polym. J. 41 (2005) 727-736.
DOI: 10.1016/j.eurpolymj.2004.10.038
Google Scholar
[36]
L.A. Suleymanova, K.А. Kara, K.A. Suleymanov, A.V. Pyrvu, D.D. Netsvet, N.P. Lukuttsova, The topology of the dispersed phase in gas concrete, Middle East Journal of Scientific Research. 10 (2013) 1492-1498.
Google Scholar
[37]
N. Lukuttsova, A. Pykin, Y. Kleymenicheva, A. Suglobov, R. Efremochkin, Nano-additives for composite building materials and their environmental SAFETY, International Journal of Applied Engineering Research. 11 (2016) 7561-7565.
Google Scholar
[38]
N. Lukuttsova, A. Pashayan, E. Khomyakova, L. Suleymanova, Yu. Kleymenicheva, The use of additives based on industrial wastes for concrete, International Journal of Applied Engineering Research. 11 (2016) 7566-7570.
Google Scholar
[39]
L. Evelson, N. Lukuttsova, Application of statistical and multi-fractal models for parameter optimization of nanomodified concrete, International Journal of Applied Engineering Research. 10 (2015) 27.
Google Scholar
[40]
A. Lukash, N. Lukutsova, N. Minko, Determination of the thermal conductivity of wood insulation materials in conditions of non-stationary heat transferInternational, Journal of Applied Engineering Research. 22 (2014) 15791.
Google Scholar
[41]
N. Lukuttsova, A. Ustinov, Concrete modified by additive based on biosilicated nanotubes, International Journal of Applied Engineering Research. 19 (2015) 40457-40460.
Google Scholar
[42]
R. Fediuk, A. Pak, V. Ginevskiy, N. Stoyushko, N. Gladkova, Environmental Hazard of Some Types of Expanded Polystyrene, IOP Conference Series: Earth and Environmental Science. 115 (2018) 12007.
DOI: 10.1088/1755-1315/115/1/012007
Google Scholar
[43]
N.P. Lukuttsova, E.G. Karpikov, S.N. Golovin, Highly-Dispersed Wollastonite-Based Additive and its Effect on Fine Concrete Strength, Solid State Phenomena. 284 (2018) 1005-1011.
DOI: 10.4028/www.scientific.net/ssp.284.1005
Google Scholar
[44]
E.G. Karpikov, N.P. Lukuttsova, E.A. Bondarenko, V.V. Klyonov, A.E. Zajcev, Effective Fine-Grained Concrete with High-Dispersed Additive Based on the Natural Mineral Wollastonite, FarEastСon - Materials and Construction: Materials International Scientific Conference «FarEastCon». 945 (2018) 85-90.
DOI: 10.4028/www.scientific.net/msf.945.85
Google Scholar
[45]
E.G. Karpikov, N.P. Lukuttsova, E.A. Bondarenko, Effective Highly Dispersed Additive for Concretes on the Basis of Natural Mineral Raw Materials, FarEastСon - Materials and Construction: Materials International Scientific Conference «FarEastCon». 992 (2019) 168-172.
DOI: 10.4028/www.scientific.net/msf.992.168
Google Scholar
[46]
V.V. Dezhin, V.N. Nechaev, A.M. Roshchupkin, Generalized dislication susceptibility in a crystal with soft mode, Fizika Tverdogo Tela. 32 (1990) 810-817.
Google Scholar
[47]
V.V. Dezhin, V.N. Nechaev, A.M. Roshchupkin, Generalized susceptibility of dislocations in ferroelectrics and ferromagnetics, Z. für Kristallographie. 193 (1990) 175-197.
DOI: 10.1524/zkri.1990.193.3-4.175
Google Scholar
[48]
I.L. Bataronov, V.V. Dezhin, V.N. Nechaev, Dynamic characteristics of dislocations in soft-mode crystals, Bull. Russian Academy Sciences: Physics. 62 (1998) 1223-1227.
Google Scholar
[49]
V.N. Nechaev, V.V. Dezhin, The bending vibrations equation of a screw dislocation in ferroelastic near the phase transition point, Vestnik Tambovskogo Universiteta. Ser.: Estestv. i tehnich. nauki. 21(3) (2016) 1188-1190.
DOI: 10.20310/1810-0198-2016-21-3-1188-1190
Google Scholar
[50]
V.V. Dezhin, V.N. Nechaev, Generalized susceptibility of a screw dislocation in ferroelastics near structural phase transition, J. Phys.: Conf. Ser. 1391 (2019) 012161.
DOI: 10.1088/1742-6596/1391/1/012161
Google Scholar
[51]
E. Kröner, Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktionen, Z. Phys. 142 (1955) 463-475.
DOI: 10.1007/bf01375082
Google Scholar
[52]
L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol 7, Theory of Elasticity, Butterworth-Heinemann, Oxford, 1986.
Google Scholar
[53]
I.L. Bataronov, V.V. Dezhin, On the natural small vibrations of dislocation in an isotropic medium, J. Phys.: Conf. Ser. 936 (2017) 012035.
DOI: 10.1088/1742-6596/936/1/012035
Google Scholar