Theoretical Study of Thermodynamic Stability Zone of Gas Hydrates Formed from Sea Water

Article Preview

Abstract:

In this work we used a combination of molecular dynamic simulation and statistical thermodynamic theory in order to obtain stability region of propane hydrates formed from sea water. MD simulation were used to get thermodynamic properties of liquid water phase, while statistical thermodynamic theory were applied for solid hydrate phase. We reconstructed phase equilibrium line ‘sea water – hydrate – gas’ and according to our calculations the temperature shift of this line is about 3. Moreover, we have shown a possibility to obtain thermodynamic parameters of salt water directly from MD simulations with sufficient accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1086)

Pages:

175-180

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Kalogirou, Progress in Energy and Combustion Science. 31 (2005) 242–281.

Google Scholar

[2] H. Fakharian, H. Ganji and A. Naderifar, Journal of Environmental Chemical Engineering. 5 (2017) 4269–4273.

Google Scholar

[3] H. Xu, M.N. Khan, C.J. Peters, E.D. Sloan and C.A. Koh, Journal of Chemical & Engineering Data. 63 (2018) 1081–1087.

Google Scholar

[4] E.D. Sloan and C. Koh, Clathrate Hydrates of Natural Gases, Third Edition Chemical Industries, Taylor & Francis (2007).

Google Scholar

[5] T. Yagasaki, M. Matsumoto, Y. Andoh, S. Okazaki and H. Tanaka, The Journal of Physical Chemistry B. 118 (2014) 11797–11804.

DOI: 10.1021/jp507978u

Google Scholar

[6] Y. Chen, C. Chen and A.K. Sum, Crystal Growth & Design. 21 (2021) 960–973.

Google Scholar

[7] P. Englezos, Industrial & Engineering Chemistry Research. 31 (1992) 2232–2237.

Google Scholar

[8] Z. Duan and R. Sun, American Mineralogist. 91 (2006) 1346–1354.

Google Scholar

[9] V.R. Belosludov, O.S. Subbotin, D.S. Krupskii, R.V. Belosludov, Y. Kawazoe and J. Kudoh, Mat. Trans. 48 (2007) 704–710.

DOI: 10.2320/matertrans.48.704

Google Scholar

[10] O.S. Subbotin, T.P. Adamova, R.V. Belosludov, H. Mizuseki, Y. Kawazoe, J. Kudoh, P.M. Rodger and V.R. Belosludov, J. Chem. Phys. 131 (2009) 114507.

DOI: 10.1063/1.3212965

Google Scholar

[11] R.K. Zhdanov, K.V. Gets, R.V. Belosludov, O.S. Subbotin, Y.Y. Bozhko and V.R. Belosludov, Fluid Phase Equilib. 434 (2017) 87–92.

DOI: 10.1016/j.fluid.2016.11.030

Google Scholar

[12] R.V. Belosludov, Y.Y. Bozhko, R.K. Zhdanov, O.S. Subbotin, Y. Kawazoe and V.R. Belosludov, Fluid Phase Equilibria, special Issue: Gas Hydrates and Semiclathrate Hydrates. 413 (2016) 220–228.

DOI: 10.1016/j.fluid.2016.03.011

Google Scholar

[13] R. Zhdanov, O. Subbotin, L.J. Chen and V. Belosludov, Int. J. Comput. Mat. Sci. Eng. 1 (2012) 1250017.

Google Scholar

[14] M.D. Jager, A.L. Ballard and E.D. Sloan, Fluid Phase Equilib. 211 (2003) 85–107.

Google Scholar

[15] T.C.W. Mak and R.K. McMullan, J. Chem. Phys. 42 (1965) 2732–2737.

Google Scholar

[16] J.D. Bernal and R.H. Fowler, J. Chem. Phys. 1 (1933) 515–548.

Google Scholar

[17] L.S. Tee, S. Gotoh and W.E. Stewart, Industrial & Engineering Chemistry Fundamentals. 5 (1966) 356–363.

Google Scholar

[18] S. Plimpton, Journal of Computational Physics. 117 (1995) 1–19.

Google Scholar

[19] S. Nosé, Molecular Physics. 52 (1984) 255–268.

Google Scholar

[20] W.G. Hoover, Phys. Rev. A 31(3) (1985) 1695–1697.

Google Scholar

[21] D. Frenkel, Molecular Dynamics Simulation of Statistical - Mechanical Systems, ed Giccotti G and Hoover W G, Amsterdam: North-Holland, 1986, p.151.

Google Scholar

[22] R.K. Zhdanov, T.P. Adamova, O.S. Subbotin, A.A. Pomeranskii, V.R. Belosludov, V.R. Dontsov and V.E. Nakoryakov, Journal of Engineering Thermophysics. 19 (2010) 282–288.

DOI: 10.1134/s1810232810040041

Google Scholar

[23] W.M. Deaton and E.M. Frost Jr, Gas hydrates and their relation to the operation of natural-gas pipe lines, American Gas Association (1946).

Google Scholar

[24] H. Kubota, K. Shimizu, Y. Tanaka and T. Makita, Journal of Chemical Engineering of Japan. 17 (1984) 423–429.

Google Scholar

[25] A.H. Mohammadi, W. Afzal and D. Richon, The Journal of Chemical Thermodynamics. 40 (2008) 1693–1697.

Google Scholar

[26] H.-Q. He, Y.-W. Chang, W.-M. Xu, Study on the Aromatic Transesterification Reaction Catalyzed by Phosphotungstic Acid, Lett. Org. Chem. 12 (2015) 280-282.

DOI: 10.2174/1570178612666150115235650

Google Scholar

[27] J.S. Ruso, N. Rajendiran, R.S. Kumaran, Metal-free synthesis of aryl esters by coupling aryl carboxylic acids and aryl boronic acids, Tetrahedron Lett. 55 (2014) 2345-2347.

DOI: 10.1016/j.tetlet.2014.02.079

Google Scholar

[28] S.S. Mahajan, B.B. Idage, N.N. Chavan, S. Sivaram, Aromatic polyesters via transesterification of dimethylterephthalate/isophthalate with bisphenol-A, J. Appl. Polym. Sci. 61 (1996) 2297-2304.

DOI: 10.1002/(sici)1097-4628(19960926)61:13<2297::aid-app8>3.0.co;2-7

Google Scholar

[29] C. Berti, V. Bonora, F. Pilati, M. Fiorini, Synthesis of aromatic polyesters based on bisphenol A and phthalic acids. A new preparative process, Macromolecules 24 (1991) 5269-5272.

DOI: 10.1021/ma00019a007

Google Scholar

[30] T.-S. Chung, S.-X. Cheng, Effect of catalysts on thin-film polymerization of thermotropic liquid crystalline copolyester, J. Polym. Sci. Pol. Chem. 38 (2000) 1257-1269.

DOI: 10.1002/(sici)1099-0518(20000415)38:8<1257::aid-pola9>3.0.co;2-9

Google Scholar

[31] A.I. Akhmetshina, E.K. Ignat'eva, T.R. Deberdeev, L.K. Karimova, Yu.N. Yuminova, A.A. Berlin, R.Ya. Deberdeev, Thermotropic Liquid Crystalline Polyesters with Mesogenic Fragments Based on the p-Oxybenzoate Unit, Polym. Sci. Ser. D 12 (2019) 427–434.

DOI: 10.1134/s1995421219040026

Google Scholar

[32] J.Y. Kim, Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites, Materials 2 (2009) 1955-1974.

DOI: 10.3390/ma2041955

Google Scholar

[33] S. Saikrasun, O. Wongkalasin, Thermal decomposition kinetics of thermotropic liquid crystalline p-hydroxy benzoic acid/poly(ethylene terephthalate) copolyester, Polymer Degradation and Stability 88 (2005) 300-308.

DOI: 10.1016/j.polymdegradstab.2004.11.004

Google Scholar

[34] J.Y. Kim, S.H. Kim, In Situ fibril formation of thermotropic liquid crystal polymer in polyesters blends, J. Polym. Sci. Pol. Phys. 43 (2005) 3600-3610.

DOI: 10.1002/polb.20626

Google Scholar

[35] E. Fekete, E. Földes, B. Pukánszky, Effect of molecular interactions on the miscibility and structure of polymer blends, Eur. Polym. J. 41 (2005) 727-736.

DOI: 10.1016/j.eurpolymj.2004.10.038

Google Scholar

[36] L.A. Suleymanova, K.А. Kara, K.A. Suleymanov, A.V. Pyrvu, D.D. Netsvet, N.P. Lukuttsova, The topology of the dispersed phase in gas concrete, Middle East Journal of Scientific Research. 10 (2013) 1492-1498.

Google Scholar

[37] N. Lukuttsova, A. Pykin, Y. Kleymenicheva, A. Suglobov, R. Efremochkin, Nano-additives for composite building materials and their environmental SAFETY, International Journal of Applied Engineering Research. 11 (2016) 7561-7565.

Google Scholar

[38] N. Lukuttsova, A. Pashayan, E. Khomyakova, L. Suleymanova, Yu. Kleymenicheva, The use of additives based on industrial wastes for concrete, International Journal of Applied Engineering Research. 11 (2016) 7566-7570.

Google Scholar

[39] L. Evelson, N. Lukuttsova, Application of statistical and multi-fractal models for parameter optimization of nanomodified concrete, International Journal of Applied Engineering Research. 10 (2015) 27.

Google Scholar

[40] A. Lukash, N. Lukutsova, N. Minko, Determination of the thermal conductivity of wood insulation materials in conditions of non-stationary heat transferInternational, Journal of Applied Engineering Research. 22 (2014) 15791.

Google Scholar

[41] N. Lukuttsova, A. Ustinov, Concrete modified by additive based on biosilicated nanotubes, International Journal of Applied Engineering Research. 19 (2015) 40457-40460.

Google Scholar

[42] R. Fediuk, A. Pak, V. Ginevskiy, N. Stoyushko, N. Gladkova, Environmental Hazard of Some Types of Expanded Polystyrene, IOP Conference Series: Earth and Environmental Science. 115 (2018) 12007.

DOI: 10.1088/1755-1315/115/1/012007

Google Scholar

[43] N.P. Lukuttsova, E.G. Karpikov, S.N. Golovin, Highly-Dispersed Wollastonite-Based Additive and its Effect on Fine Concrete Strength, Solid State Phenomena. 284 (2018) 1005-1011.

DOI: 10.4028/www.scientific.net/ssp.284.1005

Google Scholar

[44] E.G. Karpikov, N.P. Lukuttsova, E.A. Bondarenko, V.V. Klyonov, A.E. Zajcev, Effective Fine-Grained Concrete with High-Dispersed Additive Based on the Natural Mineral Wollastonite, FarEastСon - Materials and Construction: Materials International Scientific Conference «FarEastCon». 945 (2018) 85-90.

DOI: 10.4028/www.scientific.net/msf.945.85

Google Scholar

[45] E.G. Karpikov, N.P. Lukuttsova, E.A. Bondarenko, Effective Highly Dispersed Additive for Concretes on the Basis of Natural Mineral Raw Materials, FarEastСon - Materials and Construction: Materials International Scientific Conference «FarEastCon». 992 (2019) 168-172.

DOI: 10.4028/www.scientific.net/msf.992.168

Google Scholar

[46] V.V. Dezhin, V.N. Nechaev, A.M. Roshchupkin, Generalized dislication susceptibility in a crystal with soft mode, Fizika Tverdogo Tela. 32 (1990) 810-817.

Google Scholar

[47] V.V. Dezhin, V.N. Nechaev, A.M. Roshchupkin, Generalized susceptibility of dislocations in ferroelectrics and ferromagnetics, Z. für Kristallographie. 193 (1990) 175-197.

DOI: 10.1524/zkri.1990.193.3-4.175

Google Scholar

[48] I.L. Bataronov, V.V. Dezhin, V.N. Nechaev, Dynamic characteristics of dislocations in soft-mode crystals, Bull. Russian Academy Sciences: Physics. 62 (1998) 1223-1227.

Google Scholar

[49] V.N. Nechaev, V.V. Dezhin, The bending vibrations equation of a screw dislocation in ferroelastic near the phase transition point, Vestnik Tambovskogo Universiteta. Ser.: Estestv. i tehnich. nauki. 21(3) (2016) 1188-1190.

DOI: 10.20310/1810-0198-2016-21-3-1188-1190

Google Scholar

[50] V.V. Dezhin, V.N. Nechaev, Generalized susceptibility of a screw dislocation in ferroelastics near structural phase transition, J. Phys.: Conf. Ser. 1391 (2019) 012161.

DOI: 10.1088/1742-6596/1391/1/012161

Google Scholar

[51] E. Kröner, Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktionen, Z. Phys. 142 (1955) 463-475.

DOI: 10.1007/bf01375082

Google Scholar

[52] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol 7, Theory of Elasticity, Butterworth-Heinemann, Oxford, 1986.

Google Scholar

[53] I.L. Bataronov, V.V. Dezhin, On the natural small vibrations of dislocation in an isotropic medium, J. Phys.: Conf. Ser. 936 (2017) 012035.

DOI: 10.1088/1742-6596/936/1/012035

Google Scholar