The Effects of Citric Acid as Crosslinking Agent on Selected Properties of Cassava Starch Films

Article Preview

Abstract:

Materials made from renewable resources offer a promising strategy for reducing environmental problems. Starch is a well-known alternative among several biodegradable materials due to its availability, cheap cost, and degradability. This research aims to develop a degradable film from cassava starch and use citric acid as the crosslinker. Light transmittance measurement reveals that the films produced have high UV barrier capacity in the UV region and above 80% transmittance values in the visible region. Additionally, it was found that the film with 10% citric acid had a favorable balance of tensile strength, elongation, and fracture stress.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1087)

Pages:

29-34

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Gao, R. Cha, H. Luo, Y. Xu, P. Zhang, L. Han, X. Wang, Z. Zhang and X. Jiang: Carbohydrate Polymers Vol. 278 (2022), p.118922

DOI: 10.1016/j.carbpol.2021.118922

Google Scholar

[2] W.S. Lim, S.Y. Ock, G.D. Park, I.W. Lee, M.H. Lee and H.J. Park: Food Packaging and Shelf Life Vol. 26 (2020), p.100556

DOI: 10.1016/j.fpsl.2020.100556

Google Scholar

[3] J. Zhou, J. Tong, X. Su, and L.Ren: International journal of biological macromolecules Vol. 91 (2016), pp.1186-1193

Google Scholar

[4] M. Chiumarelli, L.M. Pereira, C.C. Ferrari, C.I. Sarantópoulos and M.D. Hubinger: Journal of Food Science Vol. 75 No.5 (2010), pp.E297-E304

DOI: 10.1111/j.1750-3841.2010.01636.x

Google Scholar

[5] A. Golachowski, W. Drożdż, M. Golachowska, M. Kapelko-Żeberska, and B. Raszewski: Foods Vol. 9 No.9 (2020), p.1311

DOI: 10.3390/foods9091311

Google Scholar

[6] P. G. Seligra, C. M. Jaramillo, L. Famá, and S. Goyanes: Carbohydrate Polymers Vol. 138 (2016), pp.66-74

DOI: 10.1016/j.carbpol.2015.11.041

Google Scholar

[7] N. Reddy and Y. Yang: Food chemistry Vol. 118 No.3 (2010), pp.702-711

Google Scholar

[8] W. T. Owi, H. L. Ong, S. T. Sam, C. K. Tsai, and H. M Akil: Industrial Crops and Products Vol. 139 (2019), p.111548

DOI: 10.1016/j.indcrop.2019.111548

Google Scholar

[9] Q. Ma, L. Du, and L. Wang: Sensors and Actuators B: Chemical Vol. 244 (2017), pp.759-766

Google Scholar

[10] M.M. Hassan, N. Tucker, and M.J. Le Guen: Carbohydrate Polymers Vol. 230 (2020), p.115675

Google Scholar

[11] P. Utomo, N.M. Nizardo and E. Saepudin: AIP Conference Proceedings Vol. 2242 No.1 (2020), p.040055

Google Scholar

[12] Z.Y. Ben, H. Samsudin and M.F. Yhaya: European Polymer Journal (2022), p.111377

Google Scholar

[13] P.S. Garcia, M.V.E. Grossmann, F. Yamashita, S. Mali, L.H. Dall'Antonia and W.J. Barreto: Química Nova Vol. 34 (2011), pp.1507-1510

DOI: 10.1590/s0100-40422011000900005

Google Scholar

[14] B. Ghanbarzadeh, H. Almasi, and A. A. Entezami: Industrial Crops and products Vol. 33 No.1 (2011), pp.229-235

Google Scholar

[15] R. Shi, J. Bi, Z. Zhang, A. Zhu, D. Chen, X. Zhou, L. Zhang and W. Tian: Carbohydrate Polymers Vol. 74 No.4 (2008), pp.763-770.

Google Scholar