Correlation between Particle-Size Composition and Morphology of Stone Dust and Air Quality

Article Preview

Abstract:

Currently, mining activities are mainly focused on economic efficiency and to a less extent on environmental safety. The natural environment experiences heavy impacts from mining activities. Various mining processes during the extraction of common mineral resources cause a significant increase in dust emissions. This article considers the dust fractions of granites, migmatites, marmorized limestone, ophicalcites, jades, and charoits. We determined the particle-size composition and morphology for all of the dust samples, calculated unit cell parameters and determined particle dimensions. As a result, we established that nanosize stone dust particles can enter living organisms, and their dimensions determine the impacts on the living organisms and environmental ecosystems, including the air. This research was conducted with financial support from RFBR within the scope of research project No 19-35-90096.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1088)

Pages:

53-60

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wei, B. Gao, P. Wang, H. Zhoum J. Lu, Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China, Ecotoxicol. Environ. Saf. Vol. 112 (2015) 186-192.

DOI: 10.1016/j.ecoenv.2014.11.005

Google Scholar

[2] G. Yıldırım, S. Tokalıoğlu, Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis, Ecotoxicol. Environ. Saf. Vol. 124 (2016) 369-376.

DOI: 10.1016/j.ecoenv.2015.12.041

Google Scholar

[3] X. Hu, Y. Zhang, J. Luo, T. Wang, H. Lian, Z. Ding, Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China, Environ. Pollut. Vol. 159, № 5 (2011) 1215-1221.

DOI: 10.1016/j.envpol.2011.01.037

Google Scholar

[4] Q. Wang, X. Lu, H. Pan, Analysis of heavy metals in the re-suspended road dusts from different functional areas in Xi'an, China, Environ. Sci. Pollut. Res. Vol. 23, № 19 (2016) 19838-19846.

DOI: 10.1007/s11356-016-7200-5

Google Scholar

[5] M.L. Benhaddya, A. Boukhelkhal, Y. Halis, M. Hadjel, Human Health Risks Associated with Metals from Urban Soil and Road Dust in an Oilfield Area of Southeastern Algeria, Arch. Environ. Contam. Toxicol. Vol. 70, № 3 (2016) 556-571.

DOI: 10.1007/s00244-015-0244-6

Google Scholar

[6] B. Keshavarzi, Z. Tazarvi, M.A. Rajabzadeh, A. Najmeddin, Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran, Atmos. Environ. Vol. 119 (2015) 1-10.

DOI: 10.1016/j.atmosenv.2015.08.001

Google Scholar

[7] X. Wei, B. Gao, P. Wang, H. Zhou, J. Lu, Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China, Ecotoxicol. Environ. Saf. Vol. 112 (2015) 186-192.

DOI: 10.1016/j.ecoenv.2014.11.005

Google Scholar

[8] K.J. Wilkinson, J.R. Lead, Environmental Colloids and Particles: Behaviour, Separation and Characterisation. San Francisco: John Wiley & Sons, 2007, p.470.

Google Scholar

[9] K. Dzierzanowski, R. Popek, H. Gawrońska, A. Saebø, S.W. Gawroński, Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species, Int. J. Phytoremediation. Vol. 13, 10 (2011) 1037-1046.

DOI: 10.1080/15226514.2011.552929

Google Scholar

[10] R.D. Brook, S. Rajagopalan, Particulate matter, air pollution, and blood pressure, J. Am. Soc. Hypertens. Vol. 3, № 5 (2009) 332-350.

Google Scholar

[11] A. Wik, G. Dave, Occurrence and effects of tire wear particles in the environment - A critical review and an initial risk assessment, Environ. Pollut. Vol. 157, № 1 (2009) 1-11.

DOI: 10.1016/j.envpol.2008.09.028

Google Scholar

[12] A. Zanobetti, J. Schwartz, The effect of fine and coarse particulate air pollution on mortality: A national analysis, Environ. Health Perspect. Vol. 117, № 6 (2009) 898-903.

DOI: 10.1289/ehp.0800108

Google Scholar

[13] F.J. Kelly, J.C. Fussell, Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter, Atmos. Environ. Vol. 60 (2012) 504-526.

DOI: 10.1016/j.atmosenv.2012.06.039

Google Scholar

[14] S. Fuzzi, U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M.C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J.G. Slowik, D.V. Spracklen, S. Gilardoni, Particulate matter, air quality and climate: lessons learned and future needs, Atmos. Chem. Phys. Vol. 15, № 14 (2015) 8217-8299.

DOI: 10.5194/acp-15-8217-2015

Google Scholar

[15] H. Geng, H. Hwang, X. Liu, S. Dong, C.-U. Ro, Investigation of aged aerosols in size-resolved, Asian dust storm particles transported from Beijing, China, to Incheon, Korea, using low- Z particle EPMA, Atmos. Chem. Phys. Vol. 14, № 7 (2014) 3307-3.

DOI: 10.5194/acp-14-3307-2014

Google Scholar

[16] C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases. Vol. 2, № 4 (2007) MR17-MR71.

DOI: 10.1116/1.2815690

Google Scholar

[17] P.C. Ray, H. Yu, P.P. Fu, Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs, J. Environ. Sci. Heal. Part C. Vol. 27, № 1 (2009) 1-35.

Google Scholar

[18] M. Auffan, J. Rose, J.Y. Bottero, G.V. Lowry, J.P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat. Nanotechnol. Vol. 4, № 10 (2009) 634-641.

DOI: 10.1038/nnano.2009.242

Google Scholar