[1]
Carlos H.M. Beraldo*,1 , Mauro R. da S. Silveira, Alessandra F. Baldissera, Carlos A. Ferreira, Fire protection of ultraviolet-aged intumescent coatings containing polyhedral oligomeric silsesquioxanes, Progress in Organic Coatings 149 (2020) 105903.
DOI: 10.1016/j.porgcoat.2020.105903
Google Scholar
[2]
T.A. Roberts a, L.C. Shirvill b, K. Watertonc , I. Bucklandd,∗, Fire resistance of passive fire protection coatings after long-term weathering, Process Safety and Environmental Protection 8 8 (2010) 1–19.
DOI: 10.1016/j.psep.2009.09.003
Google Scholar
[3]
R. Maciulaitis a , M. Grigonis b , J. Malaiskiene c,*, The impact of the aging of intumescent fire protective coatings on fire resistance, Fire Safety Journal 98 (2018) 15–23.
DOI: 10.1016/j.firesaf.2018.03.007
Google Scholar
[4]
Anna Sandinge12, Per Blomqvist1 and Anne Dederichs12, Does age matter? Impact on fire safety properties of composite materials from ageing, IOP Conf. Series: Materials Science and Engineering 942 (2020) 012042.
DOI: 10.1088/1757-899x/942/1/012042
Google Scholar
[5]
Babak Bahrani1 | Vahid Hemmati1 | Aixi Zhou1 | Stephen L. Quarles2, Effects of natural weathering on the fire properties of intumescent fire‐retardant coatings, Fire and Materials. 2018;42:413–423.
DOI: 10.1002/fam.2506
Google Scholar
[6]
Anna Sandinge*, Per Blomqvist, Lars Schiøtt Sørensen, Anne Dederichs, The Effect of Accelerated Ageing on Reaction-to-Fire Properties–Composite Materials, Fire Technology, 58, 1305–1332, 2022.
DOI: 10.1007/s10694-021-01197-9
Google Scholar
[7]
Ji Wang⁎ , Min Zhao, Study on the effects of aging by accelerated weathering on the intumescent fire retardant coating for steel elements, Engineering Failure Analysis 118 (2020) 104920.
DOI: 10.1016/j.engfailanal.2020.104920
Google Scholar
[8]
Wei-YongWang, Guo-QiangLi, Fire resistance study of restrained steel columns with partial damage to fire protection, Fire SafetyJournal44(2009)1088–1094.
DOI: 10.1016/j.firesaf.2009.08.002
Google Scholar
[9]
Panyue Wen a,b , Xiaofeng Wang a,c,* , Xiaming Feng a, b , Keqing Zhou a , Bin Yu a, b , Qiangjun Zhang a , Qilong Tai a, b , Lei Song a , Yuan Hu a, b, * , Richard K.K. Yuen b, d, A novel UV-curing flame retardant film with significantly intumescent effect, P. Wen et al. / Polymer Degradation and Stability 119 (2015) 288e294.
DOI: 10.1016/j.polymdegradstab.2015.05.013
Google Scholar
[10]
ASTM-G 154, Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials1, June 5, 2006.
Google Scholar
[11]
ASTM-E 119-20, Standard Test Methods for Fire Tests of Building Construction and Materials, 2020 Edition, May 1, 2020.
Google Scholar
[12]
Comite Europeen de Normalization (CEN), EN 1993-1-2:2005 Eurocode 3: Design of Steel Structures - Part 1–2: General Rules - Structural Fire Design, 2005 (Brussels, Belgium).
DOI: 10.1002/9783433601570.oth1
Google Scholar
[13]
Michael Morys, Bernhard Illerhaus, Heinz Sturm and Bernhard Schartel*, Bundesanstalt fu¨r Material for schung und –proofing (BAM), Variation of Intumescent Coatings Revealing Different Modes of Action for Good Protection Performance, Fire Technology, 53, 1569–1587, 2017.
DOI: 10.1007/s10694-017-0649-z
Google Scholar
[14]
L.L. Wang a , Y.C. Wang b,* , G.Q. Li c , Q.Q. Zhang a, An experimental study of the effects of topcoat on aging and fire protection properties of intumescent coatings for steel elements, Fire Safety Journal 111 (2020) 102931.
DOI: 10.1016/j.firesaf.2019.102931
Google Scholar