[1]
J. Chantana, Y. Kawano, T. Nishimura, A. Mavlonov, and T. Minemoto, 'Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells', Solar Energy Materials and Solar Cells, vol. 210, p.110502, Jun. 2020.
DOI: 10.1016/j.solmat.2020.110502
Google Scholar
[2]
C. Kaiser, O. J. Sandberg, N. Zarrabi, W. Li, P. Meredith, and A. Armin, 'A universal Urbach rule for disordered organic semiconductors', Nat Commun, vol. 12, no. 1, p.3988, Dec. 2021.
DOI: 10.1038/s41467-021-24202-9
Google Scholar
[3]
V. R. Akshay, B. Arun, G. Mandal, and M. Vasundhara, 'Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO 2 nanocrystals derived by a sol–gel method', Phys. Chem. Chem. Phys., vol. 21, no. 24, p.12991–13004, 2019.
DOI: 10.1039/C9CP01351B
Google Scholar
[4]
V. Mishra et al., 'Metastable behavior of Urbach tail states in BaTiO3 across phase transition', p.18.
Google Scholar
[5]
A. Y. Nugraheni, M. Nasrullah, F. A. Prasetya, F. Astuti, and Darminto, 'Study on Phase, Molecular Bonding, and Bandgap of Reduced Graphene Oxide Prepared by Heating Coconut Shell', MSF, vol. 827, p.285–289, Aug. 2015.
DOI: 10.4028/www.scientific.net/MSF.827.285
Google Scholar
[6]
I. Khambali et al., 'N-Doped rGO-Like Carbon Prepared from Coconut Shell: Structure and Specific Capacitance', Journal of Renewable Materials, vol. 0, no. 0, p.1–11, 2022.
DOI: 10.32604/jrm.2023.025026
Google Scholar
[7]
M. A. Baqiya et al., 'Structural study on graphene-based particles prepared from old coconut shell by acid–assisted mechanical exfoliation', Advanced Powder Technology, vol. 31, no. 5, p.2072–2078, May 2020.
DOI: 10.1016/j.apt.2020.02.039
Google Scholar
[8]
C.-B. Yu et al., 'Graphene oxide deposited microfiber knot resonator for gas sensing', Opt. Mater. Express, vol. 6, no. 3, p.727, Mar. 2016.
DOI: 10.1364/OME.6.000727
Google Scholar
[9]
D. Ristiani et al., 'Mesostructural study on graphenic-based carbon prepared from coconut shells by heat treatment and liquid exfoliation', Heliyon, vol. 8, no. 3, p. e09032, Mar. 2022.
DOI: 10.1016/j.heliyon.2022.e09032
Google Scholar
[10]
A. S. Hassanien and A. A. Akl, 'Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films', Superlattices and Microstructures, vol. 89, p.153–169, Jan. 2016.
DOI: 10.1016/j.spmi.2015.10.044
Google Scholar
[11]
N. S.,. K. P.,. S. I.,. S. D., and . A. K.T., 'Optical band-gap and associated Urbach energy tails in defected AlN thin films grown by ion beam sputter deposition: Effect of assisted ion energy', Advanced Materials Proceedings, vol. 2, no. 5, p.342–346, Dec. 2021.
DOI: 10.5185/amp.2017/511
Google Scholar
[12]
S. K. J. Al-Ani, 'Determination of the optical gap of amorphous materials', International Journal of Electronics, vol. 75, no. 6, p.1153–1163, Dec. 1993.
DOI: 10.1080/00207219308907191
Google Scholar
[13]
A. Feldman, 'Basic optical properties of materials', p.256.
Google Scholar
[14]
S. Benramache, Y. Aoun, S. Lakel, B. Benhaoua, and C. Torchi, 'The calculate of optical gap energy and urbach energy of Ni1−xCoxO thin films', Sādhanā, vol. 44, no. 1, p.26, Jan. 2019.
DOI: 10.1007/s12046-018-1003-y
Google Scholar
[15]
J. Haiwei, Q. Li, Z. Lan, Z. Xinlin, and Y. Rui, 'Review of wide band-gap semiconductors technology', MATEC Web of Conferences, p.5, 2015.
Google Scholar
[16]
A. Kumar et al., 'Possible evidence of delocalized excitons in Cr-doped PrFeO3: An experimental and theoretical realization', Journal of Physics and Chemistry of Solids, vol. 130, p.230–235, Jul. 2019.
DOI: 10.1016/j.jpcs.2019.03.012
Google Scholar
[17]
F. N. C. Anyaegbunam and C. Augustine, 'A Study Of optical Band Gap And Associated Urbach Energy Tail Of Chemically Deposited Metal Oxides Binary Thin Films' p.10.
Google Scholar
[18]
S. Benramache, Y. Aoun, S. Lakel, B. Benhaoua, and C. Torchi, 'The calculate of optical gap energy and urbach energy of Ni1−xCoxO thin films', Sādhanā, vol. 44, no. 1, p.26, Jan. 2019.
DOI: 10.1007/s12046-018-1003-y
Google Scholar
[19]
G. Gitonga Riungu, S. Waweru Mugo, J. Mbiyu Ngaruiya, G. Mbae John, and N. Mugambi, 'Optical Band Energy, Urbach Energy and Associated Band Tails of Nano Crystalline TiO<sub>2</sub> Films at Different Annealing Rates', AJN, vol. 7, no. 1, p.28, 2021.
DOI: 10.11648/j.ajn.20210701.15
Google Scholar
[20]
A. Kurt and K. Demirelli, 'A study on the optical properties of three-armed polystyrene and poly(styrene-b-isobutyl methacrylate)', Polym Eng Sci, vol. 50, no. 2, p.268–277, Feb. 2010.
DOI: 10.1002/pen.21530
Google Scholar
[21]
A. Sati et al., 'Direct correlation between the band gap and dielectric loss in Hf doped BaTiO3', J Mater Sci: Mater Electron, vol. 30, no. 8, p.8064–8070, Apr. 2019.
DOI: 10.1007/s10854-019-01128-z
Google Scholar
[22]
A. C. Sharma, 'Size-dependent energy band gap and dielectric constant within the generalized Penn model applied to a semiconductor nanocrystallite', Journal of Applied Physics, vol. 100, no. 8, p.084301, Oct. 2006.
DOI: 10.1063/1.2357421
Google Scholar
[23]
C. Q. Hu et al., 'Relationship between dielectric coefficient and Urbach tail width of hydrogenated amorphous germanium carbon alloy films', Appl. Phys. Lett., vol. 101, no. 4, p.042109, Jul. 2012.
DOI: 10.1063/1.4739788
Google Scholar
[24]
A. Kumar, O. V. Rambadey, and P. R. Sagdeo, 'Unorthodox Approach to Realize the Correlation between the Dielectric Constant and Electronic Disorder in Cr-Doped PrFeO 3', J. Phys. Chem. C, vol. 125, no. 13, p.7378–7383, Apr. 2021.
DOI: 10.1021/acs.jpcc.1c00203
Google Scholar
[25]
O. V. Rambadey, A. Kumar, A. Sati, and P. R. Sagdeo, 'Exploring the Interrelation between Urbach Energy and Dielectric Constant in Hf-Substituted BaTiO 3', ACS Omega, vol. 6, no. 47, p.32231–32238, Nov. 2021.
DOI: 10.1021/acsomega.1c05057
Google Scholar