[1]
E. Z. Yildiz, S. B. O. Pamuk, An investigation on the seam tensile properties of ultrasonically bonded nonwoven fabrics, Textile industry 126, vol. 68, no. 2, (2017)
DOI: 10.35530/it.068.02.1299
Google Scholar
[2]
M. Kayar, S.İ. Mıstık, Effect of fiber type and polyethylene film on mechanical properties of ultrasonically bonded multi-layer nonwoven fabrics. In: Tekstil ve Konfeksiyon, 2014, vol. 24, issue 1, pp.30-36, (2014)
Google Scholar
[3]
Information on https://www.twi-global.com/locations/romania
Google Scholar
[4]
A. Platon, Current Additive Manufacturing Solutions, in Technical-Scientific Conference for Students, Masters and PhD Students, Technical University of Moldova, 26-29 martie, 2019. Chișinău, 2019, vol. 1, pp.567-570. ISBN 978-9975-45-587-9. ISBN 978-9975-45-588-6 (Vol.1)
Google Scholar
[5]
Chapter 1: An Introduction to 3D Printing, in 3D Printing in Chemical Sciences: Applications Across Chemistry, 2019, pp.1-21, eISBN: 978-1-78801-574-5, (2019)
DOI: 10.1039/9781788015745-00001
Google Scholar
[6]
C. (Sam) Zhang, A Thermomechanical analysis of an ultrsonic bonding mechanism, Logan, Utah, (2011)
Google Scholar
[7]
S. Valvez, P.S. Abilio, Compressive Behaviour of 3D-Printed PETG Composites, Aerospace 2022, 9, 124, (2022)
DOI: 10.3390/aerospace9030124
Google Scholar
[8]
L.Yuan, S. Ding, Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review. Bioact. Mater, 4, pp.56-70, (2019)
DOI: 10.1016/j.bioactmat.2018.12.003
Google Scholar
[9]
S. Gantenbein, K. Masania; Woigk, W.; Sesseg, Three-Dimensional Printing of Hierarchical Liquid-Crystal-Polymer Structures. Nature 2018, 561, pp.226-230, (2018)
DOI: 10.1038/s41586-018-0474-7
Google Scholar
[10]
K. Szykiedans, W. Credo, Selected mechanical properties of PETG 3-D prints, XXI International Polish-Slovak Conference "Machine Modeling and Simulations 2016", Procedia Engineering 177 (2017) pp.455-461
DOI: 10.1016/j.proeng.2017.02.245
Google Scholar
[11]
Information on https://prusament.com/chemical-resistance-of-3d-printing-materials
Google Scholar
[12]
M. H. Hassan, A. M. Omar, The Potential of Polyethylene Terephthalate Glycol as Biomaterial for Bone Tissue Engineering, Mdpi, Polymers 2020, no.12, 3045, pp.1-12
DOI: 10.3390/polym12123045
Google Scholar
[13]
Information on https://www.curbellplastics.com
Google Scholar
[14]
Information on https://plasticranger.com/what-is-petg-material
Google Scholar
[15]
Information on https://dielectricmfg.com/knowledge-base/petg/
Google Scholar
[16]
Information onhttps://printparts.com/datasheets/PETG-Datasheet.pdf
Google Scholar
[17]
A. Aidy, Z. R. Shaker, Development of Anti-Ballistic Board from Ramie Fiber, Polymer-Plastics Technology and Engineering, 50: pp.622-634, Taylor & Francis Group, LLC ISSN: 0360-2559, (2015)
DOI: 10.1080/03602559.2010.551381
Google Scholar
[18]
S. Thomas, H. J Maria, Composite Materials, Ullmann's Encyclopedia of Industrial Chemistry, 2016, 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2016)
Google Scholar
[19]
Information on https://www.creality.com/products/ender-3-pro-3d-printer
Google Scholar
[20]
M. Liesegang, Y. Yu, Sonotrodes for UltrasonicWelding of Titanium/CFRP-Joints-Materials Selection and Design, Journal of Manufacturing and Materials Processing, 2021, p.5, 61.
DOI: 10.3390/jmmp5020061
Google Scholar