[1]
C. Rathinasuriyan, E. Pavithra, R. Sankar and V.S.S. Kumar, Current Status and Development of Submerged Friction Stir Welding: A Review, Int. J. Pr. Eng. Man-GT 8 (2020) 687-701
DOI: 10.1007/s40684-020-00187-6
Google Scholar
[2]
D. Paramaguru, S.R. Pedapati, M. Awang, H. Mohebbi and K.V. Sharma, Effect of process parameters on mechanical properties of AA5052 joints using underwater friction stir welding, JMES 14 (1) (2020) 6259– 6271
DOI: 10.15282/jmes.14.1.2020.05.0490
Google Scholar
[3]
M. Sucharitha, B.R. Sankar and P. Umamaheswarrao, A Review on Submerged Friction Stir Welding of Light Weight Alloys, IOP Conf. Ser.: Mater. Sci. Eng. 954 0122014 (2020) 1-9
DOI: 10.1088/1757-899x/954/1/012014
Google Scholar
[4]
N. Ethiraj, S. Meikeerthy and T. Sivabalan, Submerged friction stir welding: An overview of results of experiments and possible future works, Eng. Appl. Sci. Res. 47(1) (2020) 111-116
Google Scholar
[5]
M.M. El-Sayed, A.Y. Shash, M. Abd-Rabou and M.G. ElSherbiny, Welding and processing of metallic materials by using friction stir technique; A review, Journal of Advanced Joining Processes 3, 100059 (2021)
DOI: 10.1016/j.jajp.2021.100059
Google Scholar
[6]
D. Lingaraju and L. Salavaravu, A review on underwater friction stir welding modified with normal friction stir welding setup, Int. J. Adv. Res. Sci. Eng. 5 (10) (2016) 5-9
Google Scholar
[7]
S. Balaji, B. Aadithya and K. Balachandar, Conventional and underwater friction stir welded AA2024-T351 aluminum alloy-a comparative analysis, World J. Eng. 17 (6) (2020) 795-801
DOI: 10.1108/wje-09-2019-0270
Google Scholar
[8]
S.K. Lader, M. Baruah and R. Ballav, Experimental Investigation of Al 2024 Aluminum Alloy Joints by Underwater Friction Stir Welding for Different Tool Pin Profile, in: S. Bag, C.P. Paul and M. Baruah (Eds.), Next Generation Materials and Processing Technologies - Select Proceedings of RDMPMC 2020, Springer Nature Singapore Ltd., Singapore (2021) 81-97
DOI: 10.1007/978-981-16-0182-8_7
Google Scholar
[9]
R. Saravanakumar and T. Rajasekaran, Optimizing the underwater friction stir welding parameters to enhance the joint strength of armour grade aluminum alloy AA5083 butt joints, Mater. Today Proc. 47(19) (2021) 6999-7005
DOI: 10.1016/j.matpr.2021.05.280
Google Scholar
[10]
H. J. Mistry, P.S. Jain, J. Vaghela Tinej, Experimental Comparison Between Friction Stir Welding and Underwater Friction Stir Welding on Al6061 Alloys, in: V.R. Kalamkar and K. Monkova (Eds.), Advanced in Mechanical Engineering - Select Proceedings of ICAME 2020, Springer Nature Singapore Ltd., Singapore (2021) 169-177
DOI: 10.1007/978-981-15-3639-7_20
Google Scholar
[11]
J. Kumar, S. Majumder, A. Mondal and R. Verma, Influence of rotation speed, transverse speed, and pin length during underwater friction stir welding (UW-FSW) on aluminum AA6063: A novel criterion for parametric control, Int. J. Lightweight Mater. Manuf. 5(3) (2022) 295-305
DOI: 10.1016/j.ijlmm.2022.03.001
Google Scholar
[12]
H.I. Khalaf, R. Al-Sabur, M.E. Abdullah, A. Kubit and H.A. Derazkola, Effects of Underwater Friction Stir Welding Heat Generation on Residual Stress of AA6068-T6 Aluminum Alloy, Materials 15 (6): 2223 (2022)
DOI: 10.3390/ma15062223
Google Scholar
[13]
M.A. Wahid, P. Goel, Z.A. Khan, K.M. Agarwal and E.H. Khan, Underwater Friction Stir Welding of AA6082-T6: Thermal Analysis, in: B.K. Sharma, G. Srinivasa Rao, S. Gupta, P. Gupta and A. Prasad (Eds.), Advances in Engineering Materials – Select Proceedings of FLAME 2020, Springer Nature Singapore Ltd., Singapore (2021) 365-375
DOI: 10.1007/978-981-33-6029-7_34
Google Scholar
[14]
K. Tejonadha Babu, S. Muthukumaran, C. Sathiya Narayanan and C. H. Bharat Kumar, Analysis and characterization of forming behavior on dissimilar joints of AA5052-O to AA6061-T6 using underwater friction stir welding, Materials Science, Surf. Rev. Lett. 27 (3) 1950121 (2020) 1-14
DOI: 10.1142/s0218625x1950121x
Google Scholar
[15]
V. Msomi, S. Mabuwa, O. Muribwathoho and S. S. Motshwanedi, Effect of tool geometry on microstructure and mechanical properties of submerged friction stir processed AA6082/AA8011 joints, Mater. Today: Proc. 46 (1) (2021) 638-644
DOI: 10.1016/j.matpr.2020.11.580
Google Scholar
[16]
R. Saravanakumar, T. Rajasekaran and M. Dhanasekaran, Process parameter optimization in underwater Friction Stir welding of dissimilar aluminum alloy butt joints by design of experiment, Mater. Today, Proc. 47 (19) (2021) 7006-7013
DOI: 10.1016/j.matpr.2021.05.283
Google Scholar
[17]
S.C.J. Daniel and A. K Lakshminarayanan, Comparative Study of Friction Stir Welding and Underwater Friction Stir Welding on Magnesium ZE41 Alloy, in: S. Vijayan, N. Subramanian and K. Sankaranarayan Sami (Eds.), Trends in Manufacturing and Engineering Management, Springer Nature Singapore Ltd., Singapore (2021) 755-766
DOI: 10.1007/978-981-15-4745-4_67
Google Scholar
[18]
P. Baillie, S.W. Campbell, A. Galloway, S.R. Cater, N. McPherson, Friction stir welding of 6 mm thick carbon steel underwater and in air, Sci. Technol. Weld. Join. 20 (7) (2015) 585–593
DOI: 10.1179/1362171815y.0000000042
Google Scholar
[19]
N. Ethiraj, T. Sivabalan, S. Meikeerthy, K.L.V.R. Kumar, G. Chaithanya, G.P. Kumar Reddy, Comparative study on conventional and underwater friction stir welding of copper plates, AIP Conference Proceeding International Conference on Materials, Manufacturing and Machining, 2128 (1), 030003 (2019).
DOI: 10.1063/1.5117946
Google Scholar