The Effect of Reductor Type in Thermal Upgrading of Limonite

Article Preview

Abstract:

Thermal upgrading is the process for nickel extraction in selective reduction with holding temperature in low (300-500 °C). The effect and type of reductor are the main factor during this process. With those factors, this research will be finding the variation of reductor type. The first step is limonite and reductor characterization. Ni, Fe, Mg, Al, and Si levels in limonite are 1.4 Ni, 50.5 Fe, 1.81 Al, 4.86 Mg, and 16.5 Si weight percent, respectively. The iron oxide/oxyhydroxide content of limonite is 94.4 percent and 5.6 percent silicate. For reductor, those are graphite, palm kernel shell, and anthracite with carbon percentage 98, 77, and 68 %. From XRF, the optimum nickel grade is in the graphite and anthracite with 6.5 and 7 wt%. For phases, the ferronickel is appearing in the high intensity for the optimum reductor type and the microstructure is around 5-10 um for both. Moreover, the optimum reductor type are graphite and anthracite. Keyword: reductor type, limonite, phase, microstructure, thermal upgrading.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1098)

Pages:

131-137

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Butt C. R. M. And Cluzel D. 2013. Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements. 9(2):123–128.

DOI: 10.2113/gselements.9.2.123

Google Scholar

[2] Pickles C. A. 2004. Microwave Heating Behaviour Of Nickeliferous Limonitic Laterite Ores. Miner Eng. 17(6):775–784.

DOI: 10.1016/j.mineng.2004.01.007

Google Scholar

[3] Kyle. 2010. Nickel Laterite Processing Technologies – Where To Next?, In ALTA 2010 Nickel/Cobalt/Copper Conference, 24-27 May, Perth, Western Australia.

Google Scholar

[4] Rao M., Li G., Jiang T., Luo J., Zhang Y., Fan X. 2013. Carbothermic Reduction Of Nickeliferous Laterite Ores For Nickel Pig Iron Production In China: A Review. JOM. 65(11):1573–1583.

DOI: 10.1007/s11837-013-0760-7

Google Scholar

[5] Rodrigues F., Pickles C., Peacey J., Elliott R., Forster J. 2017. Factors Affecting The Upgrading Of A Nickeliferous Limonitic Laterite Ore By Reduction Roasting, Thermal Growth And Magnetic Separation. Minerals. 7(12):176.

DOI: 10.3390/min7090176

Google Scholar

[6] Soler J. M., Cama J., Gali S., Melendez W., Ramirez A., Estanga J. 2008. Composition And Dissolution Kinetics Of Garnierite From The Loma De Hierro Ni-Laterite Deposit, Venezuela. Chem. Geol. 249(1–2):191–202.

DOI: 10.1016/j.chemgeo.2007.12.012

Google Scholar

[7] Xiong Y. 2015. Research On Process Mineralogy For The Reverberatory Furnace Slag In Yunnan. Multipurp. Utiliz. Miner. Res. 1(2):51–57.

Google Scholar

[8] Yongue-Fouateu R., Ghogomu R. T., Penaye J., Ekodeck G. E., Stendal H., Colin F. 2006. Nickel And Cobalt Distribution In The Laterites Of The Lomie Region, South-East Cameroon. J. Afr. Earth Sci. 45(1):33–47.

DOI: 10.1016/j.jafrearsci.2006.01.003

Google Scholar

[9] Zhen S., Hao J., And Peng Z. 2013. Practice Research Of RKEF Process On Smelting Ferronickel For Laterite Nickle Ores. Non-Ferr. Min. Metallurgy. 29:35–39.

Google Scholar

[10] Zhou S., Wei Y., Li B., Wang H., Ma B., Wang C., Luo X. 2017. Mineralogical Characterization And Design Of A Treatment Process For Yunnan Nickel Laterite Ore, China. Int. J. Min. Process. 159:51–59.

DOI: 10.1016/j.minpro.2017.01.002

Google Scholar

[11] Zhou Y., Zhang C., Xie T., Hong T., Zhu H. 2017. A Microwave Thermostatic Reactor For Processing Liquid Materials Based On A Heat-Exchanger. Materials. 10(10):1160.

DOI: 10.3390/ma10101160

Google Scholar

[12] Udy M. J. And Udy M.C. 1959. Selective Smelting Of Lateritic Ores. JOM. Vol. 11. Pp. 311–314.

DOI: 10.1007/bf03397826

Google Scholar

[13] Yang S., Du W., Shi P., Shangguan J., Liu S., Zhou C., Chen P., Zhan Q., Fan H. 2016. Mechanistic And Kinetic Analysis Of Na2SO4-Modified Laterite Decomposition By Thermogravimetry Coupled With Mass Spectrometry. Plos One. Pp. 1-21.

DOI: 10.1371/journal.pone.0157369

Google Scholar

[14] Zhou S., Li B., Wei Y., Wang H., Wang C., Ma B. 2015. Effect Of Additives On Phase Transformation Of Nickel Laterite Ore During Low‐Temperature Reduction Roasting Process Using Carbon Monoxide. Drying, Roasting, And Calcining Of Minerals, Edited By P. B. Thomas Et Al. Pp. 177-184.

DOI: 10.1007/978-3-319-48245-3_22

Google Scholar

[15] Bahfie F, Manaf A, Astuti W, Nurjaman F. 2020. Tinjauan Teknologi Proses Ekstraksi Bijih Nikel Laterit. Jurnal Teknologi Mineral Dan Batubara 17 (3), Pp. 135-152.

DOI: 10.30556/jtmb.vol17.no3.2021.1156

Google Scholar

[16] Bahfie F., Manaf A., Astuti W., And Nurjaman F., 2020, "Studies On Reduction Characteristics Of Limonite And Effect Of Sodium Sulphate On The Selective Reduction To Nickel". Journal Of The Institution Of Engineers (India): Series D, 102 (1). Pp. 149-157.

DOI: 10.1007/s40033-020-00240-3

Google Scholar

[17] Bahfie F., Manaf A., Astuti W., Nurjaman F., And Prasetyo E., 2022, "Studies Of Carbon Percentage Variation And Mixing Saprolite-Limonite In Selective Reduction". Materials Today: Proceedings. 2022.

DOI: 10.1016/j.matpr.2022.04.679

Google Scholar

[18] Bahfie F., Shofi A., Herlina U., Handoko A.S., Septiana N.A., Syafriadi S., Suharto S., Sudibyo S., Suhartono S., And Nurjaman F., 2022, "The Effect Of Sulfur, Temperature, The Duration Of The Process And Reductant On The Selective Reduction Of Limonite Ore". Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 38 (1). Pp. 123–136.

DOI: 10.21203/rs.3.rs-65184/v1

Google Scholar

[19] Nurjaman F., Saekhan K., Bahfie F., Astuti W., And Suharno B., 2021, "Effect of Binary Basicity (Cao/Sio2) On Selective Reduction Of Lateritic Nickel Ore". Periodico Di Mineralogia, 90 (2). Pp. 239-245.

DOI: 10.1016/j.matpr.2020.11.687

Google Scholar

[20] Wang X. P., Sun T. C., Chen C., And Kou J., 2018, "Effects of Na2SO4 on Iron And Nickel Reduction In A High-Iron And Low-Nickel Laterite Ore". International Journal of Minerals, Metallurgy, And Materials, 25, Pp. 383–390.

DOI: 10.1007/s12613-018-1582-y

Google Scholar

[21] Wang L. W., Lü X. M., Liu M., You Z. X., Lü X. W., And Bai C. G., 2018, "Preparation of Ferronickel from Nickel Laterite Via Coal-Based Reduction Followed by Magnetic Separation". International Journal of Minerals, Metallurgy, And Materials, 25, Pp. 744–751.

DOI: 10.1007/s12613-018-1622-7

Google Scholar

[22] Nurjaman F., Sari Y., Handoko A. S., Bahfie F., Herlina U., Miftahurrahman M., Priadi D., Ferdian D., Suharno B., 2021, "Effect of Sulfur In The Reductants On Sulfidation Mechanism Of Nickel Laterite". Indonesian Mining Journal, 24, Pp. 93-103.

DOI: 10.30556/imj.vol24.no2.2021.1216

Google Scholar