Doping Effects of Metals on Electrical Conductivity of TiO2 from First-Principles Calculations

Article Preview

Abstract:

Titanium is promising candidates for bipolar plates in fuel cell, electrolysis, etc., due to the excellent corrosion resistance of titanium oxide (TiO2). However, TiO2 also possesses poor electrical conductivity and leads to high power losses, so that the conductivity of titanium needs to be further improved. In this work, the effect of thirty-nine metals on the conductivity of TiO2 was studied based on the first-principles merged with the Boltzmann transport equation and Deformation potential theory. The results show that the conductivity meets the target of 100 S∙cm-1 proposed by the U.S. Department of Energy when TiO2 doped with Cr, Sb, Ga, etc. The Sb-doped not only enhances carrier concentration, reduces relaxation time, but also improve the chemical bond. The intermediate bands induced by Au, W, Rh, etc. is a special conductivity enhanced mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1102)

Pages:

105-110

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Xu, D. Qiu, P. Yi, L. Peng, X. Lai, Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC, Prog. Nat. Sci-Mater. 30(6) (2020) 815-824.

DOI: 10.1016/j.pnsc.2020.10.015

Google Scholar

[2] Z. Xu, Z. Li, R. Zhang, T. Jiang, L. Peng, Fabrication of micro channels for titanium PEMFC bipolar plates by multistage forming process, Int. J. Hydrogen Energy. 46(19) (2021) 11092-11103.

DOI: 10.1016/j.ijhydene.2020.07.230

Google Scholar

[3] D. Zhang, L. Peng, X. Li, P. Yi, X. Lai, Controlling the Nucleation and Growth Orientation of Nanocrystalline Carbon Films during Plasma-Assisted Deposition: A Reactive Molecular Dynamics/Monte Carlo Study, J. Am. Chem. Soc. 142(5) (2020) 2617-2627.

DOI: 10.1021/jacs.9b12845

Google Scholar

[4] F. Yu, K. Wang, L. Cui, S. Wang, M. Hou, F. Xiong, R. Zou, P. Gao, H. Peng, Z. Liu, Vertical-Graphene-Reinforced Titanium Alloy Bipolar Plates in Fuel Cells, Adv. Mater. 34(21) (2022) 2110565.

DOI: 10.1002/adma.202110565

Google Scholar

[5] K. Takahashi, K. Mori, H. Takebe, Application of titanium and its alloys for automobile parts, MATEC web of conferences, EDP Sciences, 321 (2020) 02003.

DOI: 10.1051/matecconf/202032102003

Google Scholar

[6] N. Aukland, A. Boudina, D.S. Eddy, J.V. Mantese, M.P. Thompson, S.S. Wang, Alloys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates, J. Mater. Res. 19(6) (2004) 1723-1729.

DOI: 10.1557/jmr.2004.0216

Google Scholar

[7] M.-C. Wu, S.-H. Chan, K.-M. Lee, S.-H. Chen, M.-H. Jao, Y.-F. Chen, W.-F. Su, Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO 2 as the electron extraction layer through band alignment, J. Mater. Chem. A. 6(35) (2018) 16920-16931.

DOI: 10.1039/c8ta05291c

Google Scholar

[8] H. Sun, Z.-t. Xu, D. Zhang, First-principles calculations to investigate doping effects on electrical conductivity and interfacial contact resistance of TiO2, Appl. Surf. Sci. 614 (2023) 156202.

DOI: 10.1016/j.apsusc.2022.156202

Google Scholar

[9] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54(16) (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[10] G.K.H. Madsen, J. Carrete, M.J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun. 231 (2018) 140-145.

DOI: 10.1016/j.cpc.2018.05.010

Google Scholar