Photocatalysts Comparison of Low Mn-Doped SrTiO3 (SrTi1-xMnxO3; x=1% and 3%)

Article Preview

Abstract:

SrTiO3, or STO, is an intriguing candidate and has been extensively studied for photocatalytic degradation because of its outstanding features. This study purposed to compare and determine the effects of low Mn doping (x= 1% and 3%) on the phase, structural property, and photocatalytic activity of Mn-doped STO (SrTi1-xMnxO3) as a photocatalyst for degrading MB dye. The synthesis performed the co-precipitation method with a sintering temperature of 1000°C for 4 h holding time. The phase and structural properties of the powder samples were characterized using X-Ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) instruments. The XRD and FTIR data validated that all Mn-doped STO samples had been successfully fabricated. The photocatalytic activity of STO:Mn 1% and STO:Mn 3% was confirmed by Methylene Blue (MB) dye degradation under UV light. It revealed that the STO:Mn 1% showed better photocatalytic activity than STO:Mn 3%, with the highest degradation percentage of 58.01% at 6 h irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1111)

Pages:

129-134

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Gao, T. Zhang, Q. Guo, L. Gao, Enhanced Photodecomposition of Methylene Blue in Water with Sr1−xKxTiO3−δ@PC-polyHIPEs under UV and Visible Light, J. Chem. 2018 (2018) 1-10.

DOI: 10.1155/2018/9365147

Google Scholar

[2] S. Shahabuddin, N.M. Sarih, S. Mohamad, J. Joon Ching, SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light, Polymers (Basel) 8(2) (2016) 27.

DOI: 10.3390/polym8020027

Google Scholar

[3] U.S. Shenoy, H. Bantawal, D.K. Bhat, Band Engineering of SrTiO3: Effect of Synthetic Technique and Site Occupancy of Doped Rhodium, J. Phys. Chem. C. 122(48) (2018) 27567-27574.

DOI: 10.1021/acs.jpcc.8b10083

Google Scholar

[4] L. Minh-Vien, V. Ngoc-Quoc-Duy, L. Quoc-Cuong, T. Vy-Anh, P.T. Que-Phuong, H. Chao-Wei, N. Van-Huy, Manipulating the Structure and Characterization of Sr1−xLaxTiO3 Nanocubes toward the Photodegradation of 2-Naphthol under Artificial Solar Light, Catalysts 11(5) (2021) 564.

DOI: 10.3390/catal11050564

Google Scholar

[5] R. Bairagi, R. Ameta, Photocatalytic degradation of Erythrosine by using Manganese doped TiO2 Supported on Zeolite, Int. J. Chem. Sci. 14(3) (2016) 1768-1776.

Google Scholar

[6] P.S. Konstas, I. Konstantinou, D. Petrakis, T. Albanis, Development of SrTiO3 Photocatalysts with Visible Light Response Using Amino Acids as Dopant Sources for the Degradation of Organic Pollutants in Aqueous Systems, Catalysts 8(11) (2018) 528.

DOI: 10.3390/catal8110528

Google Scholar

[7] Q. Hu, J. Niu, K.Q. Zhang, M. Yao, Fabrication of Mn-Doped SrTiO3/Carbon Fiber with Oxygen Vacancy for Enhanced Photocatalytic Hydrogen Evolution, Materials (Basel) 15(13) (2022) 4723.

DOI: 10.3390/ma15134723

Google Scholar

[8] D.N. Hikmah, D.K. Sandi, F. Nurosyid, Y. Iriani, Effects of Sintering Temperature and Holding Times on the Microstructure and Chemical Bond of Strontium Titanate (SrTiO3), J. Phys.: Conf. Ser. 2110(1) (2021) 012011.

DOI: 10.1088/1742-6596/2110/1/012011

Google Scholar

[9] M. Chen, Q. Xiong, Z. Liu, K. Qiu, X. Xiao, Synthesis and photocatalytic activity of Na+ co-doped CaTiO3:Eu3+ photocatalysts for methylene blue degradation, Ceram. Int. 46(8) (2020) 12111-12119.

DOI: 10.1016/j.ceramint.2020.01.256

Google Scholar

[10] A.N. Adeyemi, A. Venkatesh, C. Xiao, Z. Zhao, Y. Li, T. Cox, D. Jing, A.J. Rossini, F.E. Osterloh, J.V. Zaikina, Synthesis of SrTiO3 and Al-doped SrTiO3 via the deep eutectic solvent route, Mater. Adv. 3(11) (2022) 4736-4747.

DOI: 10.1039/d2ma00404f

Google Scholar

[11] H. Bantawal, U.S. Shenoy, D.K. Bhat, Vanadium-Doped SrTiO3 Nanocubes: Insight into role of vanadium in improving the photocatalytic activity, Appl. Surf. Sci. 513 (2020) 145858.

DOI: 10.1016/j.apsusc.2020.145858

Google Scholar

[12] Y.R. Wang, H.L. Tao, Y. Cui, S.M. Liu, M. He, B. Song, J.K. Jian, Z.H. Zhang, Investigations on tuning the band gaps of Al doped SrTiO3, Chem. Phys. Lett. 757 (2020) 137879.

DOI: 10.1016/j.cplett.2020.137879

Google Scholar

[13] R. Afriani, D.K. Sandi, F. Nurosyid, Y. Iriani, Sintering Temperature Effects on Photocatalytic Activity of SrTi0.80Mn0.20O3, Mater. Sci. Forum. 1064 (2022) 109-115.

DOI: 10.4028/p-7kp46e

Google Scholar

[14] K.F. Moura, L. Chantelle, D. Rosendo, E. Longo, I.M.G. Santos, Effect of Fe3+ Doping in the Photocatalytic Properties of BaSnO3 Perovskite, Mater. Res 20(suppl 2) (2017) 317-324.

DOI: 10.1590/1980-5373-mr-2016-1062

Google Scholar

[15] I. Fongkaew, J.T. Thienprasert, S. Limpijumnong, Identification of Mn site in Mn-doped SrTiO3 : First principles study, Ceram. Int. 43 (2017) S381-S385.

DOI: 10.1016/j.ceramint.2017.05.258

Google Scholar

[16] G. Wu, P. Li, D. Xu, B. Luo, Y. Hong, W. Shi, C. Liu, Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes, Appl. Surf. Sci. 333 (2015) 39-47.

DOI: 10.1016/j.apsusc.2015.02.008

Google Scholar

[17] V. Trepakov, M. Makarova, O. Stupakov, E.A. Tereshina, J. Drahokoupil, M. Čerňanský, Z. Potůček, F. Borodavka, V. Valvoda, A. Lynnyk, A. Jäger, L. Jastrabik, A. Dejneka, Synthesis, structure and properties of heavily Mn-doped perovskite-type SrTiO3 nanoparticles, Mater. Chem. Phys. 143(2) (2014) 570-577.

DOI: 10.1016/j.matchemphys.2013.09.034

Google Scholar

[18] D.K. Sandi, Y. Iriani, D. Fasquelle, Microstructure and Optical Properties of Zirconium Co-Doped Barium Titanate Thin Films on Quartz Substrates, Key Eng. Mater. 907 (2022) 44-49.

DOI: 10.4028/www.scientific.net/kem.907.44

Google Scholar

[19] S.L.N. Zulmajdi, N.I.I. Zamri, A.H. Mahadi, M.Y.H. Rosli, F. Ja'afar, H.M. Yasin, E. Kusrini, J. Hobley, A. Usman, Sol-gel Preparation of Different Crystalline Phases of TiO2 Nanoparticles for Photocatalytic Degradation of Methylene Blue in Aqueous Solution, American J. Nanomater. 7 (2019) 39-45.

DOI: 10.12691/ajn-7-1-5

Google Scholar