[1]
Kandar, MI Mat, and H. M. Akil. "Application of design of experiment (DoE) for parameters optimization in compression moulding for flax reinforced biocomposites." Procedia Chemistry 19 (2016): 433-440.
DOI: 10.1016/j.proche.2016.03.035
Google Scholar
[2]
Rangaswamy, Hanumantharaya, Manjunath Patel GowdruChandrashekarappa, Danil Yu Pimenov, Khaled Giasin, and Szymon Wojciechowski. "Experimental investigation and optimization of compression moulding parameters for MWCNT/glass/kevlar/epoxy composites on mechanical and tribological properties." journal of materials research and technology 15 (2021): 327-341.
DOI: 10.1016/j.jmrt.2021.08.037
Google Scholar
[3]
Ružbarský, Juraj, and JozefŽarnovský. "Optimization of parameters in the compression moulding process of thermoset products." In Advanced Materials Research, vol. 801, pp.61-66. Trans Tech Publications Ltd, 2013.
DOI: 10.4028/www.scientific.net/amr.801.61
Google Scholar
[4]
San, Fatma Gül Boyacı, and Osman Okur. "The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates." International Journal of Hydrogen Energy 42, no. 36 (2017): 23054-23069.
DOI: 10.1016/j.ijhydene.2017.07.175
Google Scholar
[5]
Fonseca, A., N. Inacio, S. Kanagaraj, M. S. A. Oliveira, and J. A. O. Simoes. "The use of Taguchi technique to optimize the compression moulding cycle to process acetabular cup components." Journal of nanoscience and nanotechnology 11, no. 6 (2011): 5334-5339.
DOI: 10.1166/jnn.2011.3770
Google Scholar
[6]
Kim, Ho-Sang, and Seung-Hwan Chang. "Simulation of compression moulding process for long-fibre reinforced thermoset composites considering fibre bending." Composite Structures 230 (2019): 111514.
DOI: 10.1016/j.compstruct.2019.111514
Google Scholar
[7]
Ali, NoorfaIdayu Mohd, Mohd Amran Md Ali, ShajahanMaidin, Mohd Amri Sulaiman, Mohd Shukor Salleh, and Mohd Hadzley Abu Bakar. "Review on Experimental Design, Process Parameters and Responses of Compression Moulding Process." In Symposium on Intelligent Manufacturing and Mechatronics, pp.407-414. Singapore: Springer Nature Singapore, 2021.
DOI: 10.1007/978-981-16-8954-3_38
Google Scholar
[8]
Suherman, Hendra, Irmayani, and Jaafar Sahari. "Optimization of Moulding Parameters on the Electrical Conductivity of Carbon Black/Graphite/Epoxy Composite for Bipolar Plateusing the Taguchi Method." Advanced Materials Research 1119 (2015): 201-206.
DOI: 10.4028/www.scientific.net/amr.1119.201
Google Scholar
[9]
Sumesh, K.R., and K. Kanthavel. "Optimizing various parameters influencing mechanical properties of banana/coir natural fiber composites using grey relational analysis and artificial neural network models." Journal of Industrial Textiles 51, no. 4_suppl (2022): 6705S-6727S.
DOI: 10.1177/1528083720930304
Google Scholar
[10]
Kavimani, V., P. M. Gopal, K.R. Sumesh, and N. Vimal Kumar. "Multi response optimization on machinability of SiC waste fillers reinforced polymer matrix composite using taguchi's coupled grey relational analysis." Silicon 14, no. 1 (2022): 65-73.
DOI: 10.1007/s12633-020-00782-x
Google Scholar
[11]
Kamran, M. J., E. Jayamani, K. H. Soon, and Y. C. Wong. "Optimization and fabrication of pure poly lactic acid (PLA) using hot press compression moulding." In IOP Conference Series: Materials Science and Engineering, vol. 1136, no. 1, p.012012. IOP Publishing, 2021.
DOI: 10.1088/1757-899x/1136/1/012012
Google Scholar
[12]
Akinwande, Abayomi Abayomi, AdeoluAdesojiAdediran, Oluwatosin Abiodun Balogun, Bayode Julius Olorunfemi, and M. Saravana Kumar. "Optimization of flexural strength of recycled polyethylene-terephthalate (PET) eco-composite using response surface methodology." In E3S Web of Conferences, vol. 309, p.01094. EDP Sciences, 2021.
DOI: 10.1051/e3sconf/202130901094
Google Scholar
[13]
Fazita, MR Nurul, NurnadiaJohary, H. P. Abdul Khalil, NajiehaNorazli, A. A. Azniwati, and MK Mohamad Haafiz. "Parameter optimization via the Taguchi method to improve the mechanical properties of bamboo particle reinforced polylactic acid composites." BioResources 16, no. 1 (2021): 1914.
DOI: 10.15376/biores.16.1.1914-1939
Google Scholar
[14]
Chauhan, Vardaan, Timo Kärki, and JuhaVaris. "Optimization of compression molding process parameters for NFPC manufacturing using taguchi design of experiment and moldflow analysis." Processes 9, no. 10 (2021): 1853.
DOI: 10.3390/pr9101853
Google Scholar
[15]
Selamat, Mohd Zulkefli, Ayu Natasya Kasim, Sivakumar Dhar Malingam, and Mohd Ahadlin Mohd Daud. "Optimization of Compression Molding Parameters for Pineapple Leaf Fiber Reinforced Polypropylene Composites Using Taguchi Method." In Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials: ICE-SEAM 2019, 16—17 October 2019, Surakarta, Indonesia, pp.129-140. Springer Singapore, 2020.
DOI: 10.1007/978-981-15-4481-1_13
Google Scholar
[16]
Kim, Ho-Sang, Won-Gi Lee, Chan-Hee Lee, and Kyoung Don Lee. "Optimization for the prepreg compression molding of notebook computer cover using design of experiment and finite element method." SN Applied Sciences 2 (2020): 1-9.
DOI: 10.1007/s42452-020-03416-4
Google Scholar
[17]
Ramakrishnan, Karthik Ram, Nicolas Le Moigne, Olivier De Almeida, Arnaud Regazzi, and S. Corn. "Optimized manufacturing of thermoplastic biocomposites by fast induction-heated compression moulding: Influence of processing parameters on microstructure development and mechanical behaviour." Composites Part A: Applied Science and Manufacturing 124 (2019): 105493.
DOI: 10.1016/j.compositesa.2019.105493
Google Scholar
[18]
Siva, R., T.N. Valarmathi, B. Siddardha, Kallat Sanjana, and Bhasker Dakshin. "Processing and evaluation of mechanical properties of sisal and bamboo chemically treated hybrid composite." In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) Volume 1, pp.435-441. Springer Singapore, 2019.
DOI: 10.1007/978-981-13-2697-4_47
Google Scholar
[19]
Kadi, Nawar, BehnazBaghaei, and Mikael Skrifvars. "Using Finite Element Simulation to Optimize Thermoplastic Bio-Composites Process Parameters." In International Journal of Management and Applied Science, vol. 4, pp.73-75. 2018.
Google Scholar
[20]
Fial, J., M. Harr, P. Böhler, and P. Middendorf. "Automated wet compression moulding of load-path optimised TFP preforms with low cycle times." In IOP Conference Series: Materials Science and Engineering, vol. 406, no. 1, p.012018. IOP Publishing, 2018.
DOI: 10.1088/1757-899x/406/1/012018
Google Scholar
[21]
Banik, Nabanita. "An experimental effort on the impact of hot press forming process parameters on tensile, flexural & impact properties of bamboo fiber composites with the help of Taguchi experimental design." Materials Today: Proceedings 5, no. 9 (2018): 20210-20216.
DOI: 10.1016/j.matpr.2018.06.391
Google Scholar
[22]
Velmurugan, G., V. Siva Shankar, L. Natrayan, S. Sekar, Pravin P. Patil, M. Senthil Kumar, and Subash Thanappan. "Multiresponse optimization of mechanical and physical adsorption properties of activated natural fibers hybrid composites." Adsorption Science & Technology 2022 (2022).
DOI: 10.1155/2022/1384738
Google Scholar
[23]
Pachorkar, Padmakar, Gurjeet Singh, Neeraj Agarwal, and Ashish Srivastava. "Multi response optimization of injection moulding process to reduce sink marks and cycle time." Materials Today: Proceedings 72 (2023): 1089-1093.
DOI: 10.1016/j.matpr.2022.09.172
Google Scholar
[24]
He, Liping, Fan Xia, Dachuan Chen, Shuyi Peng, Shujuan Hou, and Junchao Zheng. "Optimization of molding process parameters for enhancing mechanical properties of jute fiber reinforced composites." Journal of Reinforced Plastics and Composites 42, no. 9-10 (2023): 446-454.
DOI: 10.1177/07316844221130487
Google Scholar
[25]
Jansson, N., W. D. Wakeman, and J-AE Månson. "Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms." Composite Structures 80, no. 1 (2007): 21-31.
DOI: 10.1016/j.compstruct.2006.02.036
Google Scholar
[26]
Scaffaro, Roberto, Francesco Lopresti, Luigi Botta, SalvatriceRigogliuso, and Giulio Ghersi. "Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering." Journal of the mechanical behavior of biomedical materials 63 (2016): 303-313.
DOI: 10.1016/j.jmbbm.2016.06.021
Google Scholar