Impact of Assorted Temperature on Yield and Surface Morphology of Multiple Layers of Carbon Nanotubes by Spurt Pyrolysis Techniques

Article Preview

Abstract:

Nanoscale carbon tubes (also referred as CNTs) along with other nanostructures made from carbon could keep you amused as you waiting for your chance to participate in this nanotechnology. Research on carbon nanotubes has attracted an enormous amount of focus from researchers across the world for the significant function that it could have in the growing field of nanotechnology. The MLCNTs were made using these temperatures as the operational parameters using a fatty acid methyl ester formed from peanut oil as a precursor at a flow rate of 20 mL per hour in an environment comprised of argon. The intention of this research is to examine a usual green originator for the production of multiple layer carbon nanotubes (MLCNTs) using the methyl ester of a fatty acid of peanut oil at temperature that range from 725°C to 875°C with intervals of 75°C on Fe-Co assisted on Silica within an atmosphere of argon. The investigation will be concentrated on the production of MLCNTs on Fe-Co assisted on Silica. The as-grown carbon nanomaterials have been studied using SEM, HRTEM, XRD, and Raman spectroscopic research. We observed that the yield and diameter of the as-grown MLCNTs were not the same across the entire board for temperatures. The crystalline temperature of the CNTs climbed from 725 degrees Celsius to 800 degrees Celsius initially, and eventually it dropped from 800 degrees Celsius to 875 degrees Celsius. The temperature at which MLCNTs are created may have a bearing on the level of graphitization that they'll show.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1119)

Pages:

101-110

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Iijima, S., Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, (1993) 603-605

DOI: 10.1038/363603a0

Google Scholar

[2] Yan Geng, Ming Yang Liu, Jing Li, Xiao Mei Shi, Jang Kyo Kim, Composites: Part A, 39 (2008) 1876-1883.

Google Scholar

[3] Tsai, T. Y, Lee, C. Y, Tai, N. H, & Tuan, W. H, Appl.Phys. Lett., 95 (2009) 013107.

Google Scholar

[4] Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker, Nature, 393(1998) 49-52.

Google Scholar

[5] Niraj Sinha, Jiazhi Ma, and John T. W. Yeow, Journal of Nanosci and Nanotechnol., 6 (2006) 573-590.

Google Scholar

[6] Liangbing Hu, Jang Wook Choi, Yuan Yang, SangmooJeong, Fabio La Mantia, Li-Feng Cui & Yi Cui, Proc Nati Acad Sci., 106 (2009) 21490-21494.

DOI: 10.1073/pnas.0908858106

Google Scholar

[7] Avouris Ph, Martel R, Derycke V &Appenzeller J, Physica B: Condensed Matter, 323 (2002) 6-14.

DOI: 10.1016/s0921-4526(02)00870-0

Google Scholar

[8] Andersen S. M, Borghei M, Lund P, Elina Y.R, Pasanen A, Kauppinen E & Skou E.M, Solid State Ionics, 231(2013) 94-101.

DOI: 10.1016/j.ssi.2012.11.020

Google Scholar

[9] Hua He, Lien Ai Pham-Huy, Pierre Dramou, Deli Xiao, Pengli Zuo & Chuong Pham-Huy, BioMed Research International, (2013) Article ID 578290.

DOI: 10.1155/2013/578290

Google Scholar

[10] Lange H, Sioda M, Huczko A, Zhu Y.Q, Krot H.W & Walton D.R.M, Carbon, 41 (2003)1617-1623.

DOI: 10.1016/s0008-6223(03)00111-8

Google Scholar

[11] Che G., Lakshmi B. B, Martin C. R, Fisher E. R, & Rodney S. Ruoff, Chem. Mater., 10 (1998) 260–267.

Google Scholar

[12] Lihong Tian, Liqun Ye, Kejian Deng, Ling Zan, Journal of Solid State Chemistry, 184 (2011) 1465–1471.

Google Scholar

[13] YuryGogotsi, Joseph A. Libera, & Masahiro Yoshimura, Journal of Materials Research, 15 (2000) 2591-2594.

Google Scholar

[14] Novoselova I.A, Oliinyk N.F, Volkov S.V, Konchits A.A, Yanchuk I.B, Yefanov V.S, Kolesnik S.P &Karpets M.V, Physica E, 40 (2008) 2231-2237.

DOI: 10.1016/j.physe.2007.10.069

Google Scholar

[15] Fu Liu Xiaobin, Zhang, Jipeng, Cheng Jiangpin, TuFanzhi Kong, Wanzhen Huang &Changpin Chen, Carbon, 41(2003) 2527-2532.

Google Scholar

[16] Aguilar-Elguezabal A, Wilber Antunez, Gabriel Alonso F, Paraguay Delgado, Francisco Espinosa & M Miki-Yoshida, Diamond and Related Materials, 15 (2006) 1329-1335.

DOI: 10.1016/j.diamond.2005.10.011

Google Scholar

[17] Hernadi, K, Konya, Z, Siska, A, Kiss, J, Oszko, A, Nagy, JB & Kiricsi, I Materials Chemistry and Physics, vol. 77, no. 2(2002) 536-541

Google Scholar

[18] Rakesh A. Afre, Soga T, Jimbo T, Mukul Kumar, Ando Y, Sharon M, Prakash R. Somani & Umeno M, Microporous and Mesoporous Materials, 96 (2006) 184-190.

DOI: 10.1016/j.micromeso.2006.06.036

Google Scholar

[19] N.Mohanraj, N.Mathan Kumar, P.Prathap, P.Ganeshan, K.Raja, V.Mohanavel, Alagar Karthick, M. Muhibbullah, Mechanical Properties and Electrical Resistivity of the Friction Stir Spot-Welded Dissimiliar Al-Cu Joints, International Journal of Polymer Science, 2022,208-222.

DOI: 10.1155/2022/4130440

Google Scholar

[20] Ramshankar. P, Sashikkumar. M, Ganeshan.P, Raja.K, Experimental investigation of hybrid composites using biowastes and Calotropisgigantea : an eco-friendly approach, Global NEST Journal, Vol 25, No 4, pp.70-76

DOI: 10.30955/gnj.004620

Google Scholar

[21] N. BhanuTeja, P. Ganeshan, V. Mohanavel, AlagarKarthick, K. Raja, Krishnakumar Krishnasamy, M. Muhibbullah, "Performance and Emission Analysis of Watermelon Seed Oil Methyl Ester and n-Butanol Blends Fueled Diesel Engine", Mathematical Problems in Engineering, vol. 2022, Article ID 2456338, 12 pages, 2022

DOI: 10.1155/2022/2456338

Google Scholar

[22] Sureshbabu. Y, Ganeshan. P, Raja. K, Vivek.S, (2023), 3Performance and emissions parameters optimization of thermal barrier coated engine tested with Tamanu blended diesel fuel: a novel emission pollution-preventive approach, Global NEST Journal, Vol 25, No 3, pp.78-86

DOI: 10.30955/gnj.004594

Google Scholar

[23] Balasubramanian B, Raja K, Vignesh Kumar V, Ganeshan P. Characterization study of Holopteleaintegrifolia tree bark fibres reinforced epoxy composites. Natural Product Research. 2022 Oct 24:1-0.

DOI: 10.1080/14786419.2022.2137505

Google Scholar

[24] Nagaraja Ganesh, B., B. Rekha, V. Mohanavel, and P. Ganeshan. "Exploring the Possibilities of Producing Pulp and Paper from Discarded Lignocellulosic Fibers." Journal of Natural Fibers (2022): 1-11.

DOI: 10.1080/15440478.2022.2137618

Google Scholar

[25] K. Vinayagar, P. Ganeshan, P. Nelson Raja, M. S. Zakir Hussain, P. Vengala Kumar, P. Ramshankar, V. Mohanavel, N. Mathankumar, K. Raja, Tesfaye Tefera Bezabih, "Optimization of Crashworthiness Parameters of Thin-Walled Conoidal Structures", Advances in Materials Science and Engineering, vol. 2022, Article ID 4475605, 6 pages, 2022

DOI: 10.1155/2022/4475605

Google Scholar

[26] M. Lokeshwari, P. Vidya Sagar, K. Dilip Kumar, D. Thirupathy, Ram Subbiah, P. Ganeshan, A. H. Seikh, S. M. A. K. Mohammed, David Christopher, "Optimization and Tribological Properties of Hybridized Palm Kernel Shell Ash and Nano Boron Nitride Reinforced Aluminium Matrix Composites", Journal of Nanomaterials, vol. 2022, Article ID 8479012, 9 pages, 2022

DOI: 10.1155/2022/8479012

Google Scholar

[27] C. R. Mahesha, Suprabha R, Chintada Polayya, Moti Lal Rinawa, T. Sakthi, Neha Munjal, Ishwarya Komalnu Raghavan, P. Ganeshan, Chanakyan C, "Optimization of the Spark Plasma Sintering Process for High-Volume Fraction Tungsten Carbide/Al 2025 Composites", Advances in Materials Science and Engineering, vol. 2022, Article ID 6433716, 7 pages, 2022

DOI: 10.1155/2022/6433716

Google Scholar

[28] A.R. Krishnaraja, P. Kulanthaivel, P. Ramshankar, Vincent Herald Wilson, Ponnusamy Palanisamy, S. Vivek, V. Sampathkumar, P. Ganeshan, M. C. Sashikkumar, K. Raja, Senthil Kumaran Selvaraj, A. John Rajan, S. Jose, "Performance of Polyvinyl Alcohol and Polypropylene Fibers under Simulated Cementitious Composites Pore Solution", Advances in Materials Science and Engineering, vol. 2022, Article ID 9669803, 7 pages, 2022

DOI: 10.1155/2022/9669803

Google Scholar

[29] Das, R. K., Nayak, B., Ganeshan, P., Gautam, S. S., & Mandal, K. K. (2022). Dynamic mechanical behavior of a nano sized alumina fiber reinforced epoxy hybrid composites. Materials Today: Proceedings, Volume 76, Part 3, 2023, Pages 524-527.

DOI: 10.1016/j.matpr.2022.11.158

Google Scholar

[30] K Raja, P Ganeshan, Bipin Kumar Singh, Ram Krishna Upadhyay, P Ramshankar & V Mohanavel, (2023) Effect of mol.% of Yttria in Zirconia matrix alongside a comparative study among YSZ, alumina & ZTA ceramics in terms of mechanical and functional properties Sådhanå 48:72

DOI: 10.1007/s12046-023-02136-w

Google Scholar