Dynamic Mechanical Analysis of Graphene Oxide/ Low Density Polyethylene Nanocomposite

Article Preview

Abstract:

The global scientific community for the last three decades focuses mainly on polymer-based nanocomposites due to their ease of fabrication, flexibility, and above all easiness to handle them. Among the polymer materials, polyethylene got the attraction because of its readiness to be combined with most of the filler materials available in natural form as well as newly synthesized ones. The present study focuses on the synthesis of nanocomposites of Low-density polyethylene (LDPE) with graphene oxide nanoparticles as the filler. The graphene oxide nanoparticles are synthesized using a modified Hummers method. The composites are prepared by varying the amount of graphene oxide nanoparticles in the LDPE matrix using the melt extrusion method. The nanocomposites prepared were found to have good mechanical properties compared to the virgin LDPE material. The Dynamic Mechanic Analysis (DMA) confirmed that the quantity of the graphene oxide nanoparticles has a major role in the viscoelastic behaviour of the composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1120)

Pages:

97-102

Citation:

Online since:

April 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mousavi, M., and E. Fini. Silanization mechanism of silica nanoparticles in bitumen using 3-aminopropyl triethoxysilane (APTES) and 3-glycidyloxypropyl trimethoxysilane (GPTMS). ACS Sustainable Chemistry & Engineering 8 (8): (2020)3231–40.

DOI: 10.1021/acssuschemeng.9b06741

Google Scholar

[2] Nagaraj, C., D. Mishra, and J. D. P. Reddy. Estimation of tensile properties of fabricated multi layered natural jute fiber reinforced E-glass composite material. Materials Today: Proceedings 27, (2020),1443–48.

DOI: 10.1016/j.matpr.2020.02.864

Google Scholar

[3] Geyer R; Chapter 2 - Production, use, and fate of synthetic polymers. In: Letcher TM (ed) Plastic Waste and Recycling. Academic Press, (2020),13–32.

DOI: 10.1016/b978-0-12-817880-5.00002-5

Google Scholar

[4] Jóźwiak B, Boncel S Rheology of ionanofuids – a review. J Mol Liq (2020) 302:112568.

Google Scholar

[5] Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M Molecular characterization of polymer networks. Chem Rev (2021) 121:5042–5092.

DOI: 10.1021/acs.chemrev.0c01304

Google Scholar

[6] Bashir MA; Use of dynamic mechanical analysis (DMA) for characterizing interfacial interactions in filled polymers. Solids (2021) 2:108–120

DOI: 10.3390/solids2010006

Google Scholar

[7] Wagner MH, Narimissa E, Poh L, Huang Q Modelling elongational viscosity overshoot and brittle fracture of lowdensity polyethylene melts. Rheol Acta. (2022) 00397-022-01328-1.

DOI: 10.1007/s00397-022-01328-1

Google Scholar

[8] Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. (2019), 1, 2–30.

DOI: 10.1016/j.nanoms.2019.02.006

Google Scholar

[9] N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan , Wei-Wen Liu C.H. Voon,Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Procedia Engineering 184 (2017) 469-477

DOI: 10.1016/j.proeng.2017.04.118

Google Scholar

[10] Pang, Y.; Yang, J.; Curtis, T.E.; Luo, S.; Huang, D.; Feng, Z.; Morales-Ferreiro, J.O.; Sapkota, P.; Lei, F.; Zhang, J.; et al. Exfoliated Graphene Leads to Exceptional Mechanical Properties of Polymer Composite Films. ACS Nano 2019, 13, 1097–1106.

DOI: 10.1021/acsnano.8b04734

Google Scholar

[11] Wang, Z.; Zhao, S.; Hong, L.; Huang, J. Preparation and Properties of Silver-Based Cellulose/Polyvinyl Alcohol Antibacterial Materials. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4382–4393.

DOI: 10.1007/s10904-020-01669-5

Google Scholar

[12] Joshi, S.R.; Sharma, A.; Kim, G.H.; Jang, J. Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110465.

DOI: 10.1016/j.msec.2019.110465

Google Scholar

[13] Cho, B.G.; Joshi, S.R.; Lee, J.; Park, Y.B.; Kim, G.H. Direct growth of thermally reduced graphene oxide on carbon fiber for enhanced mechanical strength. Compos. Part B Eng. 2020, 193.

DOI: 10.1016/j.compositesb.2020.108010

Google Scholar

[14] Wu, X.; Li, H.; Cheng, K.; Qiu, H.; Yang, J. Modified graphene/polyimide composite films with strongly enhanced thermal conductivity. Nanoscale 2019, 11, 8219–8225

DOI: 10.1039/c9nr02117e

Google Scholar

[15] Costa UO, Nascimento LFC, Almeida Bezerra WB, de Oliveira Aguiar V, Pereira AC, Monteiro SN, Pinheiro WA Dynamic Mechanical Behavior of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Composites: A Brief Report.Polymers (Basel). 2021 Jun 7;13(11):1897

DOI: 10.3390/polym13111897

Google Scholar

[16] Irtiseva, K.; Lapkovskis, V.; Mironovs, V.; Ozolins, J.; Thakur, V.K.; Goel, G.; Shishkin, A. Towards Next-Generation Sustainable Composites Made of Recycled Rubber, Cenospheres, and Biobinder. Polymers 2021, 13, 574.

DOI: 10.3390/polym13040574

Google Scholar

[17] Ates, B.; Koytepe, S.; Ulu, A.; Gurses, C.; Thakur, V.K. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 2020, 120, 9304–9362.

DOI: 10.1021/acs.chemrev.9b00553

Google Scholar

[18] Platnieks, O.; Gaidukovs, S.; Barkane, A.; Sereda, A.; Gaidukova, G.; Grase, L.; Laka, M. Bio-based poly (butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo-mechanical and biodegradation studies. Polymers 2020, 12, 1472.

DOI: 10.3390/polym12071472

Google Scholar

[19] Luz, F.S.; Garcia Filho, F.D.C.; Del-Rio, M.T.G.; Nascimento, L.F.C.; Pinheiro, W.A.; Monteiro, S.N. Graphene-incorporated natural fiber polymer composites: A first overview. Polymers 2020, 12, 1601.

DOI: 10.3390/polym12071601

Google Scholar

[20] Hussein, S.; Abd-Elnaiem, A.; Ali, N.; Mebed, A. Enhanced thermo-mechanical properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) polymer blended with nanographene. Curr. Nanosci. 2020, 16, 994–1001

DOI: 10.2174/1573413716666200310121947

Google Scholar

[21] Abd-Elnaiem, A.M.; Hussein, S.I.; Assaedi, H.S.; Mebed, A.M. Fabrication and evaluation of structural, thermal, mechanical and optical behavior of epoxy–TEOS/MWCNTs composites for solar cell covering. Pol. Bull. 2020, 1–23.

DOI: 10.1007/s00289-020-03301-5

Google Scholar

[22] Ali, N.A.; Hussein, S.I.; Asafa, T.B.; Abd-Elnaiem, A.M. Mechanical Properties and Electrical Conductivity of Poly (methyl methacrylate)/Multi-walled Carbon Nanotubes Composites. Iranian J. Sci. Technol. Trans. A Sci. 2020, 44, 1567–1576.

DOI: 10.1007/s40995-020-00948-7

Google Scholar