Evaluation of Fungal Decay and Biodegradation of Thermoplastic Composites Reinforced with Date Palm Fibres

Article Preview

Abstract:

Growing interest in utilizing and processing natural fibres (NF) to create biodegradable and sustainable composites as environmental concerns upsurge globally. Date palm trees (DPT) account for more than 4.5 million tons of waste annually worldwide, making it one of the most abundant agricultural biomass waste in the MENA region. This study evaluated the biological resistance of thermoplastic composites developed from polylactic acid (PLA) and recycled polyvinyl chloride (RPVC) reinforced with date palm fibre (DPF) at different contents (10, 20, 30, 40 wt.%) and fibre size (250 – 500 µm and ≥1,000 µm). Composites where exposed to the brown-rot fungus; Irpex lacteus, and white-rot fungus; Tyromyces palustris, to evaluate its resistance to biodegradation. Results showed that composites developed using PLA had higher weight loss (%) when compared to the same samples but reinforced with RPVC. Composites with higher DPF content showed high rates of decay when used with different polymer matrix. Also, DPF length had a significant effect on the disintegration of the composites. DPF/PLA reinforced with 40 wt.% DPF showed the highest weight loss (WL%) reaching 5.61% and 5.46% when exposed to Tyromyces palustris and Irpex lacteus respectively. On the other hand, the biodegradation had a direct impact on the disintegration of the composites developed where the WL%, of PLA composites developed with 40 wt.% DPF showed 61.40%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1126)

Pages:

77-87

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Awad, Y. Zhou, E. Katsou, Y. Li, M. Fan, A Critical Review on Date Palm Tree (Phoenix dactylifera L.) Fibres and Their Uses in Bio-composites, Springer Netherlands, 2020.

DOI: 10.1007/s12649-020-01105-2

Google Scholar

[2] Y. Dong, A. Ghataura, H. Takagi, H.J. Haroosh, A.N. Nakagaito, K.T. Lau, Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties, Compos Part A Appl Sci Manuf 63 (2014) 76–84.

DOI: 10.1016/j.compositesa.2014.04.003

Google Scholar

[3] R. Siakeng, M. Jawaid, M. Asim, S. Siengchin, Accelerated weathering and soil burial effect on biodegradability, colour and textureof coir/pineapple leaf fibres/PLA biocomposites, Polymers (Basel) 12 (2020).

DOI: 10.3390/polym12020458

Google Scholar

[4] S. Awad, Y. Zhou, E. Katsou, M. Fan, Polymer Matrix Systems Used for Date Palm Composite Reinforcement, in: M. Midani, N. Saba, O.Y. Alothman (Eds.), Date Palm Fiber Composite, Springer, Singapore, 2020: p.119–159. https://doi.org/.

DOI: 10.1007/978-981-15-9339-0_4

Google Scholar

[5] S. Awad, T. Hamouda, M. Midani, E. Katsou, M. Fan, Polylactic Acid (PLA) Reinforced with Date Palm Sheath Fiber Bio-Composites: Evaluation of Fiber Density, Geometry, and Content on the Physical and Mechanical Properties, Journal of Natural Fibers 00 (2022) 1–19.

DOI: 10.1080/15440478.2022.2143979

Google Scholar

[6] T. Alsaeed, B.F. Yousif, H. Ku, The potential of using date palm fibres as reinforcement for polymeric composites, Mater Des 43 (2013) 177–184. https://doi.org/10.1016/j.matdes. 2012.06.061.

DOI: 10.1016/j.matdes.2012.06.061

Google Scholar

[7] P.J. Herrera-Franco, A. Valadez-González, Mechanical properties of continuous natural fibre-reinforced polymer composites, Compos Part A Appl Sci Manuf 35 (2004) 339–345.

DOI: 10.1016/j.compositesa.2003.09.012

Google Scholar

[8] M. V. Madurwar, R. V. Ralegaonkar, S.A. Mandavgane, Application of agro-waste for sustainable construction materials: A review, Constr Build Mater 38 (2013) 872–878.

DOI: 10.1016/j.conbuildmat.2012.09.011

Google Scholar

[9] A. Alawar, A.M. Hamed, K. Al-Kaabi, Characterization of treated date palm tree fiber as composite reinforcement, Compos B Eng 40 (2009) 601–606.

DOI: 10.1016/j.compositesb.2009.04.018

Google Scholar

[10] L.A. Elseify, M. Midani, L.A. Shihata, H. El-Mously, Review on cellulosic fibers extracted from date palms (Phoenix Dactylifera L.) and their applications, Cellulose 26 (2019) 2209–2232.

DOI: 10.1007/s10570-019-02259-6

Google Scholar

[11] S. Abani, F. Hafsi, A. Kriker, A. Bali, Valorisation of Date Palm Fibres in Sahara Constructions, in: Energy Procedia, Elsevier Ltd, 2015: p.289–293. https://doi.org/10.1016/ j.egypro.2015.07.608.

DOI: 10.1016/j.egypro.2015.07.608

Google Scholar

[12] S. Awad, T. Hamouda, M. Midani, Y. Zhou, E. Katsou, M. Fan, Date palm fibre geometry and its effect on the physical and mechanical properties of recycled polyvinyl chloride composite, Ind Crops Prod 174 (2021) 114172.

DOI: 10.1016/j.indcrop.2021.114172

Google Scholar

[13] O. Benaimeche, A. Carpinteri, M. Mellas, C. Ronchei, D. Scorza, S. Vantadori, The influence of date palm mesh fibre reinforcement on flexural and fracture behaviour of a cement-based mortar, Compos B Eng 152 (2018) 292–299. https://doi.org/10.1016/j.compositesb. 2018.07.017.

DOI: 10.1016/j.compositesb.2018.07.017

Google Scholar

[14] H. Chaib, A. Kriker, A. Mekhermeche, Thermal Study of Earth Bricks Reinforced by Date palm Fibers, in: Energy Procedia, Elsevier Ltd, 2015: p.919–925. https://doi.org/10.1016/ j.egypro.2015.07.827.

DOI: 10.1016/j.egypro.2015.07.827

Google Scholar

[15] T. Tioua, A. Kriker, G. Barluenga, I. Palomar, Influence of date palm fiber and shrinkage reducing admixture on self-compacting concrete performance at early age in hot-dry environment, Constr Build Mater 154 (2017) 721–733. https://doi.org/10.1016/j.conbuildmat. 2017.07.229.

DOI: 10.1016/j.conbuildmat.2017.07.229

Google Scholar

[16] A. Mekhermeche, A. Kriker, S. Dahmani, Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber, in: AIP Conf Proc, American Institute of Physics Inc., 2016.

DOI: 10.1063/1.4959400

Google Scholar

[17] K. Almi, A. Benchabane, S. Lakel, A. Kriker, Potential utilization of date palm wood as composite reinforcement, Journal of Reinforced Plastics and Composites 34 (2015) 1231–1240.

DOI: 10.1177/0731684415588356

Google Scholar

[18] A. Mohareb, M.F. Thévenon, E. Wozniak, P. Gérardin, Effects of monoglycerides on leachability and efficacy of boron wood preservatives against decay and termites, Int Biodeterior Biodegradation 64 (2010) 135–138.

DOI: 10.1016/j.ibiod.2009.12.004

Google Scholar

[19] S.J. Christian, Natural fibre-reinforced noncementitious composites (biocomposites), Elsevier Ltd, 2019.

DOI: 10.1016/B978-0-08-102704-2.00008-1

Google Scholar

[20] E. Bari, J.J. Morrell, A. Sistani, Durability of natural/synthetic/biomass fiber-based polymeric composites: Laboratory and field tests, Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (2018) 15–26.

DOI: 10.1016/B978-0-08-102290-0.00002-7

Google Scholar

[21] A.S.O. Mohareb, A.H. Hassanin, A.A. Badr, K.T.S. Hassan, R. Farag, Novel composite sandwich structure from green materials: Mechanical, physical, and biological evaluation, J Appl Polym Sci 132 (2015) 4–11.

DOI: 10.1002/app.42253

Google Scholar

[22] V.A. Alvarez, R.A. Ruseckaite, A. Vázquez, Degradation of sisal fibre/Mater Bi-Y biocomposites buried in soil, Polym Degrad Stab 91 (2006) 3156–3162.

DOI: 10.1016/j.polymdegradstab.2006.07.011

Google Scholar

[23] Z.N. Azwa, B.F. Yousif, A.C. Manalo, W. Karunasena, A review on the degradability of polymeric composites based on natural fibres, Mater Des 47 (2013) 424–442.

DOI: 10.1016/j.matdes.2012.11.025

Google Scholar