[1]
L. Ranakoti et al., "Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites," Materials (Basel)., vol. 15, no. 12, Jun. 2022.
DOI: 10.3390/MA15124312
Google Scholar
[2]
S. Farah, D. G. Anderson, and R. Langer, "Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review," Adv. Drug Deliv. Rev., vol. 107, p.367–392, Dec. 2016.
DOI: 10.1016/J.ADDR.2016.06.012
Google Scholar
[3]
K. Deshmukh, M. Basheer Ahamed, R. R. Deshmukh, S. K. Khadheer Pasha, P. R. Bhagat, and K. Chidambaram, "Biopolymer Composites With High Dielectric Performance: Interface Engineering," Biopolym. Compos. Electron., p.27–128, Jan. 2017.
DOI: 10.1016/B978-0-12-809261-3.00003-6
Google Scholar
[4]
E. H. Tümer and H. Y. Erbil, "Extrusion-Based 3D Printing Applications of PLA Composites: A Review," Coatings 2021, Vol. 11, Page 390, vol. 11, no. 4, p.390, Mar. 2021.
DOI: 10.3390/COATINGS11040390
Google Scholar
[5]
T. M. Joseph et al., "3D printing of polylactic acid: recent advances and opportunities," Int. J. Adv. Manuf. Technol. 2023 1253, vol. 125, no. 3, p.1015–1035, Jan. 2023.
DOI: 10.1007/S00170-022-10795-Y
Google Scholar
[6]
F. Daver, K. P. M. Lee, M. Brandt, and R. Shanks, "Cork–PLA composite filaments for fused deposition modelling," Compos. Sci. Technol., vol. 168, p.230–237, Nov. 2018.
DOI: 10.1016/J.COMPSCITECH.2018.10.008
Google Scholar
[7]
L. Sang, S. Han, X. Peng, X. Jian, and J. Wang, "Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties," Compos. Part A Appl. Sci. Manuf., vol. 125, p.105518, Oct. 2019.
DOI: 10.1016/J.COMPOSITESA.2019.105518
Google Scholar
[8]
A. Le Duigou, A. Barbé, E. Guillou, and M. Castro, "3D printing of continuous flax fibre reinforced biocomposites for structural applications," Mater. Des., vol. 180, Oct. 2019.
DOI: 10.1016/J.MATDES.2019.107884
Google Scholar
[9]
A. Pappu, K. L. Pickering, and V. K. Thakur, "Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding," Ind. Crops Prod., vol. 137, p.260–269, Oct. 2019.
DOI: 10.1016/J.INDCROP.2019.05.040
Google Scholar
[10]
L. Thangavelu et al., "Antimicrobial Properties of Silver Nitrate Nanoparticle and Its Application in Endodontics and Dentistry: A Review of Literature," J. Nanomater., vol. 2021, 2021.
DOI: 10.1155/2021/9132714
Google Scholar
[11]
A. Fouda, G. Abdel-Maksoud, H. A. Saad, A. A. Gobouri, Z. M. Mohammedsaleh, and M. A. H. El-Sadany, "The Efficacy of Silver Nitrate (AgNO3) as a Coating Agent to Protect Paper against High Deteriorating Microbes," Catal. 2021, Vol. 11, Page 310, vol. 11, no. 3, p.310, Feb. 2021.
DOI: 10.3390/CATAL11030310
Google Scholar
[12]
A. Mirhashemi, A. Bahador, A. Sodagar, M. Pourhajibagher, A. Amiri, and E. Gholamrezayi, "Evaluation of antimicrobial properties of nano-silver particles used in orthodontics fixed retainer composites: an experimental in-vitro study," J. Dent. Res. Dent. Clin. Dent. Prospects, vol. 15, no. 2, p.87, Mar. 2021.
DOI: 10.34172/JODDD.2021.015
Google Scholar
[13]
R. Li, J. Chen, T. C. Cesario, X. Wang, J. S. Yuan, and P. M. Rentzepis, "Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria," Proc. Natl. Acad. Sci. U.S.A., vol. 113, no. 48, pp.13612-13617, Nov. 2016.
DOI: 10.1073/pnas.1611193113
Google Scholar
[14]
J.J.Y. Peng, M. G. Botelho, and J. P. Matinlinna, "Silver compounds used in dentistry for caries management: A review," J. Dent., vol. 40, no. 7, p.531–541, Jul. 2012.
DOI: 10.1016/J.JDENT.2012.03.009
Google Scholar
[15]
M. Concannon, L. Keogh, J. Stephenson, G. Parfitt, and J. Forrest, "A randomized comparative evaluation of clinical and home application to investigate the effectiveness of silver nitrate (AgNO3 ) (95%) for the treatment of verruca pedis," Int. J. Pharm. Pract., vol. 25, no. 6, p.421–428, Dec. 2017.
DOI: 10.1111/IJPP.12345
Google Scholar
[16]
Q. A. L. Hassan and I. M. Hummudi, "Evaluation the effects of incorporation of silver nitrate on some mechanical properties of soft liner materials," Indian J. Public Heal. Res. Dev., vol. 10, no. 11, p.4833–4839, Nov. 2019.
DOI: 10.5958/0976-5506.2019.03915.9
Google Scholar
[17]
H. A. Hasson and L. E. Alwan, "The Influencing Effect of Silver Nitrate Fillers on the hardness of Flexible Resin," J. Tech., vol. 4, p.62–68, Jun. 2022.
DOI: 10.51173/jt.v4i2.490
Google Scholar
[18]
J.E. Shigley, R. G. Budynas, and J. K. Nisbett, "Shigley's mechanical engineering design," 2019.
Google Scholar
[19]
R. M. Ondrasik, P. Jordan, and A. Sriharan, "A clinical mimicker of melanoma with distinctive histopathology: Topical silver nitrate exposure," J. Cutan. Pathol., vol. 47, no. 12, p.1205–1210, Dec. 2020.
DOI: 10.1111/CUP.13851
Google Scholar
[20]
W. Ko et al., "A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors," Nanotechnology, vol. 22, no. 40, Oct. 2011.
DOI: 10.1088/0957-4484/22/40/405502
Google Scholar
[21]
F. Triawan, E. Rachmawati, B. A. Budiman, D. W. Djamari, A. Saputro, and I. Arpi, "Investigation of Compressive Behavior of Pre-folded Thin-walled Column Fabricated by 3D Printing," Indones. J. Sci. Technol., vol. 6, no. 3, p.543–560, 2021.
DOI: 10.17509/IJOST.V6I3.39138
Google Scholar
[22]
S. Zulaikah, F. Triawan, B. A. Budiman, Y. Romadhon, and D. Kamaludin, "Study on the Mechanical Properties and Behavior of Corrugated Cardboard under Tensile and Compression Loads," Mater. Sci. Forum, vol. 1092, p.45–54, Jun. 2023.
DOI: 10.4028/P-ZTF25L
Google Scholar
[23]
L. N. Fitria, S. Zulaikah, D. W. Djamari, M. A. Muflikhun, and F. Triawan, "Experimental Study on the Compression and Buckling Properties of 3D Printed PLA Materials," 7th Int. Conf. Electr. Veh. Technol. ICEVT 2022 - Proceeding, p.116–121, 2022.
DOI: 10.1109/ICEVT55516.2022.9924705
Google Scholar