Green Synthesis of TiO2 Nanoparticles Using Piper Longum Leaf Extract: Morphological, Optical and Antibacterial Characterization

Article Preview

Abstract:

In this study, Titanium dioxide nanoparticles (TiO2 NPs) were synthesized using Piper longum leaf extract as both a capping and reducing agent through a green synthesis approach. The synthesized TiO2 NPs were thoroughly characterized using multiple techniques: X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Diffuse reflectance spectroscopy (UV-DRS), field emission scanning electron microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) analysis, and X-ray photoelectron spectroscopy (XPS). XRD analysis confirmed the anatase phase of TiO2 with an average crystallite size of 57 nm. UV-DRS revealed a band gap of 3.39 eV, indicative of TiO2 nanoparticle formation. FTIR spectroscopy identified biomolecules such as flavonoids, phenol compounds, and tannins around the nanoparticles. SEM images showed a variety of shapes, including hexagons, pentagons, triangles, and tetragons. EDX analysis confirmed the presence of titanium, carbon, and oxygen, verifying the purity of the TiO2 nanoparticles. BET analysis determined a specific surface area of 59 m²/g. The antibacterial efficacy of the TiO2 nanoparticles was assessed using the agar well diffusion method, demonstrating significant antibacterial activity against Pseudomonas aeruginosa, Streptococcus mutans, Staphylococcus aureus, and Klebsiella pneumoniae. Additionally, the photocatalytic degradation of methylene blue dye by the TiO2 NPs achieved an efficiency of 96%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1143)

Pages:

73-88

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, M. Malik, Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications, Sci. Rep. 6 (2016) 1-12.

DOI: 10.1038/srep38064

Google Scholar

[2] S. Panimalar, S. Logambal, R. Thambidurai, C. Inmozhi, R. Uthrakumar, A. Muthukumaran, R.A. Rasheed, M.K. Gatasheh, A. Raja, J. Kennedy, K. Kaviyarasu, Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications, Environ. Res. 205 (2022) 112560.

DOI: 10.1016/j.envres.2021.112560

Google Scholar

[3] S.S. Rathnakumar, K. Noluthando, A.J. Kulandaiswamy, J.B. Rayappan, K. Kasinathan, J. Kennedy, M. Maaza, Stalling behaviour of chloride ions: a nonenzymatic electrochemical detection of a-Endosulfan using CuO interface, Sens. Actuators, B 293 (2019) 100–106.

DOI: 10.1016/j.snb.2019.04.141

Google Scholar

[4] C.M. Magdalane, K. Kaviyarasu, A. Raja, M.V. Arularasu, G.T. Mola, A.B. Isaev, M. Maaza, Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: investigation of cytotoxicity, antibacterial growth inhibition using catalyst, J. Photochem. Photobiol., B 185 (2018) 275–282.

DOI: 10.1016/j.jphotobiol.2018.06.011

Google Scholar

[5] A.D. Aina, O. OluwafayokeOwolo, F.O. Aina, O.N. Majolagbe, O.D. Olukanni, M.C. M.C. Stephen, G. Aderiike, Biosynthesis of silver nanoparticles using almond plant leaf extract and their antibacterial activity, Int. J. Eng. Sci., 8 (2018) 19227.

Google Scholar

[6] I. Ocsoy, M.L. Paret, M.A. Ocsoy, S. Kunwar, T. Chen, M. You, W. Tan, Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans, ACS Nano. 7 (2013) 8972–8980.

DOI: 10.1021/nn4034794

Google Scholar

[7] G. Jayakumar, A.A. Irudayaraj, A.D. Raj, S.J. Sundaram, K. Kaviyarasu, Electrical and magnetic properties of Ni doped CeO2 nanostructured for optoelectronic applications, J. Phys. Chem. Solids 160 (2022) 110369.

DOI: 10.1016/j.jpcs.2021.110369

Google Scholar

[8] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.

DOI: 10.1021/cr00033a004

Google Scholar

[9] C. Fabrega, T. Andreu, A. Cabot, J.R. Morante, Location and catalytic role of iron species in TiO2: Fe photocatalysts: an EPR study, J. Photochem. Photobiol., A 211 (2010)170–175.

DOI: 10.1016/j.jphotochem.2010.03.003

Google Scholar

[10] F. Fang, J. Kennedy, E. Manikandan, J. Futter, A. Markwitz, Morphology and characterization of TiO2 nanoparticles synthesized by arc discharge, Chem. Phys. Lett. 521 (2012) 86–90.

DOI: 10.1016/j.cplett.2011.11.046

Google Scholar

[11] S.H. Gebre, M.G. Sendeku, New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications, SN Appl. Sci. 1 (2019) 928.

DOI: 10.1007/s42452-019-0931-4

Google Scholar

[12] K. Hemalatha, G. Madhumitha, A. Kajbafvala, N. Anupama, R. Sompalle, S. MohanaRoopan, Function of nanocatalyst in chemistry of organic compounds revolution, J. Nanomater 2013 (2013) 341015.

DOI: 10.1155/2013/341015

Google Scholar

[13] S.M. Roopan, S.H.S. Kumar, G. Madhumitha, K. Suthindhiran, Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2), Appl BiochemBiotechnol 175 (2015) 1567–1575.

DOI: 10.1007/s12010-014-1381-5

Google Scholar

[14] V. Helan, J.J. Prince, N.A. Al-Dhabi, M.V. Arasu, A. Ayeshamariam, G. Madhumitha, S.M. Roopan, M. Jayachandran, Neem leaves mediated preparation of NiO nanoparticles and its mag netization, coercivity and antibacterial analysis, Results Phys 6 (2016) 712–718.

DOI: 10.1016/j.rinp.2016.10.005

Google Scholar

[15] I. Hussain, N.B. Singh, A. Singh, H. Singh, S.C. Singh, Green synthesis of nanoparticles and its potential application, Biotech. Lett. 38 (2016) 545–560.

DOI: 10.1007/s10529-015-2026-7

Google Scholar

[16] B.E. Azar, A. Ramazani, S.T. Fardood, A. Morsali, Green synthesis and characterization of ZnAl2O4@ ZnOnanocomposite and its environmental applications in rapid dye degradation, Optik 208 (2020)164129.

DOI: 10.1016/j.ijleo.2019.164129

Google Scholar

[17] S. Taghavi Fardood, A. Ramazani, F. Moradnia, Z. Afshari, S.F. Gan jkhanlu, YekkeZare, Green synthesis of ZnO nanopar ticles via Sol-gel method and investigation of its application in solvent-free synthesis of 12-Aryl-tetrahydrobenzo [α] xanthene 11-one derivatives under microwave irradiation, ChemMeth odol 3 (2019) 696–706.

DOI: 10.33945/sami/chemm.2019.6.2

Google Scholar

[18] S. TaghaviFardood, F. Moradnia, S. Moradi, R. Forootan, F. YekkeZare, M. Heidari, Eco-friendly synthesis and characterization of α-Fe2O3 nanoparticles and study of their photocatalytic activity for degradation of Congo red dye, Nanochem. Res. 4 (2019) 140–147.

Google Scholar

[19] T. Ochiai, A. Fujishima, Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification, J. Photochem. Photobiol. C 13 (2012) 247–262.

DOI: 10.1016/j.jphotochemrev.2012.07.001

Google Scholar

[20] Z. Xing, J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, W. Zhou, Recent advances in floating TiO2-based photocatalysts for environmental application, Appl. Catal. B 225 (2018) 452-467.

DOI: 10.1016/j.apcatb.2017.12.005

Google Scholar

[21] S. MiarAlipour, D. Friedmann, TiO2/porous adsorbents: Recent advances and novel applications, J. Hazard. Mater. 341 (2018) 404–423.

DOI: 10.1016/j.jhazmat.2017.07.070

Google Scholar

[22] Y. Rufai, S. Chandren, N. Basar, Influence of Solvents' Polarity on the Physicochemical Properties and Photocatalytic Activity of Titania Synthesized Using Deinbollia pinnata Leaves, Front. Chem. 8 (2020) 1-11.

DOI: 10.3389/fchem.2020.597980

Google Scholar

[23] G. Sheveglieri, Gas sensors, Dordrecht, Kluwer, 1992.

Google Scholar

[24] M.A. Lazar, S. Varghese, S.S. Nair, Photocatalytic water treat meant by Titanium dioxide, Catalysts. 2 (2012) 572–601.

DOI: 10.3390/catal2040572

Google Scholar

[25] W. Zhang, Y. Li, Y. Su, K. Mao, Q. Wang, Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent, J. Hazard Mater. 215 (2012) 252–8.

DOI: 10.1016/j.jhazmat.2012.02.060

Google Scholar

[26] R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids Surf B Bio interfaces, 79 (2010) 5–18.

DOI: 10.1016/j.colsurfb.2010.03.029

Google Scholar

[27] A. Kubacka, M. Diez, D. Rojo, Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium, Sci Rep. 4 (2014) 4134.

DOI: 10.1038/srep04134

Google Scholar

[28] K. Blecher, A. Nasir, A. Friedman, The growing role of nano technology in combating infectious disease, Virulence. 2 (2011) 95–401.

DOI: 10.4161/viru.2.5.17035

Google Scholar

[29] H. Selhofer, Titanium oxides for optical-interference coatings, Vac Thin Films. 2 (1999) 20–4.

Google Scholar

[30] S. Jadoun, R. Arif, N.K. Jangid, R.K. Meena, Green Synthesis of Nanoparticles Using Plant Extracts, Environ. Chem. Lett. 19 (2021) 355–374.

DOI: 10.1007/s10311-020-01074-x

Google Scholar

[31] N. Jamila, N. Khan, A. Bibi, A. Haider, S. N. Khan, A. Atlas, U. Nishan, A. Minhaz, F. Javed, A. Bibi, Piper Longum Catkin Extract Mediated Synthesis of Ag, Cu, and Ni Nanoparticles and Their Applications as Biological and Environmental Remediation Agents, Arab. J. Chem. 13 (2020) 6425–6436.

DOI: 10.1016/j.arabjc.2020.06.001

Google Scholar

[32] M. Jayapriya, D. Dhanasekaran, M. Arulmozhi, E. Nandhakumar, N. Senthilkumar, K. Sureshkumar, Green Synthesis of Silver Nanoparticles Using Piper Longum Catkin Extract Irradiated by Sunlight: antibacterial and Catalytic Activity, Res. Chem. Intermed. 45 (2019) 3617-3631.

DOI: 10.1007/s11164-019-03812-5

Google Scholar

[33] Z.X. Ming, H.J. Li, Dynamic property evaluation of aluminium alloy 2519A by split Hopkinson pressure bar, Trans Nonferrous Met Soc China 18 (2008) 1–5.

DOI: 10.1016/s1003-6326(08)60001-1

Google Scholar

[34] M.B. Tahir, G. Nabi, N.R. Khalid, M. Rafique, Role of europium on WO3 performance under visible-light for photocatalytic activity. Ceram Int 44 (2018) 5705–5709.

DOI: 10.1016/j.ceramint.2017.12.223

Google Scholar

[35] G. Rajakumar, A.A. Rahuman, S.M. Roopan, I.M. Chung, K. Anbarasan, V. Karthikeyan, Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangife raindica extract against blood-feeding parasites, Parasitol Res 114 (2015) 571–581.

DOI: 10.1007/s00436-014-4219-8

Google Scholar

[36] G. Nabi, W. Raza, M.B. Tahir, Green synthesis of TiO2 nano particle using cinnamon powder extract and the study of optical properties, J. InorgOrganometPolym Mater. 30 (2020) 425–1429.

DOI: 10.1007/s10904-019-01248-3

Google Scholar

[37] R. Sankar, K. Rizwana, K.S. Shivashangari, V. Ravikumar, Ultra-rapid photocatalytic activity of Azadirachtaindica engineered colloidal titanium dioxide nanoparticles, ApplNanosci. 5 (2015) 731–736.

DOI: 10.1007/s13204-014-0369-3

Google Scholar

[38] G. Nabi, N.R. Khalid, M.B. M. Tahir, Rafique, M. Rizwan, S. Hussain, T. Iqbal, A. Majid, A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts, J. InorgOrganometPolym Mater 28 (2018) 1552–1564.

DOI: 10.1007/s10904-018-0812-0

Google Scholar

[39] A. Jalill, D.H. Raghad, R.S. Nuaman, A.N. Abd, Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties, World Sci News 49 (2016) 204–222.

Google Scholar

[40] S.M. Roopan, A. Bharathi, A. Prabhakarn, A.A. Rahuman, K. Velayutham, G. Rajakumar, R.D.M. PadmajaLekshmi, G. Madhumitha, Efficient Phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annonasquamosa peel extract, Spec trochim Acta Part A MolBiomolSpectrosc 98 (2012) 86–90.

DOI: 10.1016/j.saa.2012.08.055

Google Scholar

[41] T.Y. Suman, R.R.S. Ravindranath, D. Elumalai, P.K. Kaleena, R. Ramkumar, P. Perumal, L. Aranganathan, P.S. Chitrarasu, Larvicidal activity of titanium dioxide nanoparticles synthesized using Morindacitrifolia root extract against Anopheles stephensi, Aedesaegypti and Culexquinquefasciatus and its other effect on non-target fish, Asian Pac J Trop Dis 5 (2015) 224-230.

DOI: 10.1016/s2222-1808(14)60658-7

Google Scholar

[42] V. Santhoshkumar, AA. Rahuman, C. Jayaseelan, G. Rajakumar, S.A.V.K.J.J.S.K. Marimuthu Kirthi Velayutham Thomas VenkatesanKim, Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties, Asian Pac J. Trop Med. 7 (2014) 968–976.

DOI: 10.1016/s1995-7645(14)60171-1

Google Scholar

[43] J. Fowsiya, G. Madhumitha, N.A Al-Dhabi, M.V. Arasu, Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles, J. PhotochemPhotobiol B 162 (2016) 395–401.

DOI: 10.1016/j.jphotobiol.2016.07.011

Google Scholar

[44] M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E. Poinern, Green synthesis of metallic nanoparticles via biological entities, Mater. (Basel). 8 (2015) 7278–308.

DOI: 10.3390/ma8115377

Google Scholar

[45] A. K. Shimi, H. M. Ahmed, M. Wahab, S. Katheria, S. M. Wabaidur, G. E. Eldesoky, M. A. Islam, K. P. Rane, Synthesis and applications of green synthesized TiO2 nanoparticles for photocatalytic dye degradation and antibacterial activity, J. Nano mater. 2022, (2022) 7060388.

DOI: 10.1155/2022/7060388

Google Scholar

[46] B. Abebe, Synergetic and charge transfer properties of a metal oxide heterojunction: Photocatalytic activities, Frontiers in Catalysis 2 (2022) 950384.

DOI: 10.3389/fctls.2022.950384

Google Scholar

[47] N. N. Nagarani, V. J. Vasu, Structural and Optical Characterization of ZnO Thin Films by Sol-Gel Method, Photonics Spintron. 2 (2017) 19–21.

Google Scholar

[48] J. Chauhan, N. Shrivastav, A. Dugaya, D. Pandey, Synthesis and Characterization of Ni and Cu Doped ZnO, MOJPS 1 (2017) 26–34.

Google Scholar

[49] P. Kubelka, F. Munk, Ion exchange recovery of palladium (II) from nitrate weak acidic solutions Z. Tech. Phys. 12 (1931) 593–601.

Google Scholar

[50] P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Structural, optical and morphological analyses of pristine titanium di oxide nanoparticles−Synthesized via sol−gel route, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117 (2014) 622− 629.

DOI: 10.1016/j.saa.2013.09.037

Google Scholar

[51] J.I. Pankove, Optical Process in Semiconductors, Prentice-Hall, New Jersey, 1971.

Google Scholar

[52] H. K. Abbood, N. A. Ali, Studying of the structural and optical properties of titanium dioxide nanoparticles prepared by chemical method, J. Opt. 53 (2023) 2698-2703.

DOI: 10.1007/s12596-023-01393-6

Google Scholar

[53] Y.M. Ghaly, S.T. Jamil, E.I. Seesy, R.E. Souaya, A.R. Nasr, Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2, Chem. Eng. J. 168 (2011) 446-454.

DOI: 10.1016/j.cej.2011.01.028

Google Scholar

[54] G. Martra, V. Augugliaro, S. Coluccia, Photocatalytic oxidation of gaseous toluene on polycrystalillnne TiO2: FTIR investigation of surface reactivity of different types of catalysts, Stud. Surf. Sci. Catal. 130 (2000) 665-670.

DOI: 10.1016/s0167-2991(00)81034-4

Google Scholar

[55] S.A. Mansour, A. Farha, M. Kotkata, Sol−Gel Synthesized Co-Doped Anatase TiO2 Nanoparticles: Structural, Optical, and Magnetic Characterization. Journal of Inorganic and Organometallic, Polymers and Materials 29 (2019) 1375−1382.

DOI: 10.1007/s10904-019-01102-6

Google Scholar

[56] G. Venkatesh, M. Geerthana, S. Prabhu, R. Ramesh, K.M. Prabu, Enhanced photocatalytic activity of reduced graphene oxide/SrSnO3nanocomposite for aqueous organic pollutant degradation, Optik 206 (2020) 164055.

DOI: 10.1016/j.ijleo.2019.164055

Google Scholar

[57] C. F. Toncón-Leal, J. Villarroel-Rocha, M. T. P. d. Silva, T. P. Braga, K. Sapag, Characterization of mesoporous region by the scanning of the hysteresis loop in adsorption−desorption isotherms, Adsorption 27 (2021) 1109−1122.

DOI: 10.1007/s10450-021-00342-8

Google Scholar

[58] B. Bharti, S. Kumar, H.-N.Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment, Sci. Rep. 6 (2016) 32355.

DOI: 10.1038/srep32355

Google Scholar

[59] F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles, Sci. Rep. 8 (2018) 7104.

DOI: 10.1038/s41598-018-25673-5

Google Scholar

[60] Z. Matouk, M. Islam, M. Gutiérrez, J. Pireaux, A . Achour, X-ray Photoelectron Spectroscopy (XPS) Analysis of Ultrafine Au Nanoparticles Supported Over Reactively Sputtered TiO2 Films, Nanomaterials 12 (2022) 3692.

DOI: 10.3390/nano12203692

Google Scholar

[61] Z.P. Zhang, S.S. Feng, In-vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy, Biomacromolecules 7 (2006) 1139-1146.

DOI: 10.1021/bm050953v

Google Scholar

[62] M.T. Martinez, M.A. Callejas, A.M. Benito, M. Cochet, T. Seeger, A. Anson, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, J.L.G. Fierro, W.K. Maser, Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation, Carbon 41 (2003) 2247–2256.

DOI: 10.1016/s0008-6223(03)00250-1

Google Scholar