[1]
K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, M. Malik, Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications, Sci. Rep. 6 (2016) 1-12.
DOI: 10.1038/srep38064
Google Scholar
[2]
S. Panimalar, S. Logambal, R. Thambidurai, C. Inmozhi, R. Uthrakumar, A. Muthukumaran, R.A. Rasheed, M.K. Gatasheh, A. Raja, J. Kennedy, K. Kaviyarasu, Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications, Environ. Res. 205 (2022) 112560.
DOI: 10.1016/j.envres.2021.112560
Google Scholar
[3]
S.S. Rathnakumar, K. Noluthando, A.J. Kulandaiswamy, J.B. Rayappan, K. Kasinathan, J. Kennedy, M. Maaza, Stalling behaviour of chloride ions: a nonenzymatic electrochemical detection of a-Endosulfan using CuO interface, Sens. Actuators, B 293 (2019) 100–106.
DOI: 10.1016/j.snb.2019.04.141
Google Scholar
[4]
C.M. Magdalane, K. Kaviyarasu, A. Raja, M.V. Arularasu, G.T. Mola, A.B. Isaev, M. Maaza, Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: investigation of cytotoxicity, antibacterial growth inhibition using catalyst, J. Photochem. Photobiol., B 185 (2018) 275–282.
DOI: 10.1016/j.jphotobiol.2018.06.011
Google Scholar
[5]
A.D. Aina, O. OluwafayokeOwolo, F.O. Aina, O.N. Majolagbe, O.D. Olukanni, M.C. M.C. Stephen, G. Aderiike, Biosynthesis of silver nanoparticles using almond plant leaf extract and their antibacterial activity, Int. J. Eng. Sci., 8 (2018) 19227.
Google Scholar
[6]
I. Ocsoy, M.L. Paret, M.A. Ocsoy, S. Kunwar, T. Chen, M. You, W. Tan, Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans, ACS Nano. 7 (2013) 8972–8980.
DOI: 10.1021/nn4034794
Google Scholar
[7]
G. Jayakumar, A.A. Irudayaraj, A.D. Raj, S.J. Sundaram, K. Kaviyarasu, Electrical and magnetic properties of Ni doped CeO2 nanostructured for optoelectronic applications, J. Phys. Chem. Solids 160 (2022) 110369.
DOI: 10.1016/j.jpcs.2021.110369
Google Scholar
[8]
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
DOI: 10.1021/cr00033a004
Google Scholar
[9]
C. Fabrega, T. Andreu, A. Cabot, J.R. Morante, Location and catalytic role of iron species in TiO2: Fe photocatalysts: an EPR study, J. Photochem. Photobiol., A 211 (2010)170–175.
DOI: 10.1016/j.jphotochem.2010.03.003
Google Scholar
[10]
F. Fang, J. Kennedy, E. Manikandan, J. Futter, A. Markwitz, Morphology and characterization of TiO2 nanoparticles synthesized by arc discharge, Chem. Phys. Lett. 521 (2012) 86–90.
DOI: 10.1016/j.cplett.2011.11.046
Google Scholar
[11]
S.H. Gebre, M.G. Sendeku, New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications, SN Appl. Sci. 1 (2019) 928.
DOI: 10.1007/s42452-019-0931-4
Google Scholar
[12]
K. Hemalatha, G. Madhumitha, A. Kajbafvala, N. Anupama, R. Sompalle, S. MohanaRoopan, Function of nanocatalyst in chemistry of organic compounds revolution, J. Nanomater 2013 (2013) 341015.
DOI: 10.1155/2013/341015
Google Scholar
[13]
S.M. Roopan, S.H.S. Kumar, G. Madhumitha, K. Suthindhiran, Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2), Appl BiochemBiotechnol 175 (2015) 1567–1575.
DOI: 10.1007/s12010-014-1381-5
Google Scholar
[14]
V. Helan, J.J. Prince, N.A. Al-Dhabi, M.V. Arasu, A. Ayeshamariam, G. Madhumitha, S.M. Roopan, M. Jayachandran, Neem leaves mediated preparation of NiO nanoparticles and its mag netization, coercivity and antibacterial analysis, Results Phys 6 (2016) 712–718.
DOI: 10.1016/j.rinp.2016.10.005
Google Scholar
[15]
I. Hussain, N.B. Singh, A. Singh, H. Singh, S.C. Singh, Green synthesis of nanoparticles and its potential application, Biotech. Lett. 38 (2016) 545–560.
DOI: 10.1007/s10529-015-2026-7
Google Scholar
[16]
B.E. Azar, A. Ramazani, S.T. Fardood, A. Morsali, Green synthesis and characterization of ZnAl2O4@ ZnOnanocomposite and its environmental applications in rapid dye degradation, Optik 208 (2020)164129.
DOI: 10.1016/j.ijleo.2019.164129
Google Scholar
[17]
S. Taghavi Fardood, A. Ramazani, F. Moradnia, Z. Afshari, S.F. Gan jkhanlu, YekkeZare, Green synthesis of ZnO nanopar ticles via Sol-gel method and investigation of its application in solvent-free synthesis of 12-Aryl-tetrahydrobenzo [α] xanthene 11-one derivatives under microwave irradiation, ChemMeth odol 3 (2019) 696–706.
DOI: 10.33945/sami/chemm.2019.6.2
Google Scholar
[18]
S. TaghaviFardood, F. Moradnia, S. Moradi, R. Forootan, F. YekkeZare, M. Heidari, Eco-friendly synthesis and characterization of α-Fe2O3 nanoparticles and study of their photocatalytic activity for degradation of Congo red dye, Nanochem. Res. 4 (2019) 140–147.
Google Scholar
[19]
T. Ochiai, A. Fujishima, Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification, J. Photochem. Photobiol. C 13 (2012) 247–262.
DOI: 10.1016/j.jphotochemrev.2012.07.001
Google Scholar
[20]
Z. Xing, J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, W. Zhou, Recent advances in floating TiO2-based photocatalysts for environmental application, Appl. Catal. B 225 (2018) 452-467.
DOI: 10.1016/j.apcatb.2017.12.005
Google Scholar
[21]
S. MiarAlipour, D. Friedmann, TiO2/porous adsorbents: Recent advances and novel applications, J. Hazard. Mater. 341 (2018) 404–423.
DOI: 10.1016/j.jhazmat.2017.07.070
Google Scholar
[22]
Y. Rufai, S. Chandren, N. Basar, Influence of Solvents' Polarity on the Physicochemical Properties and Photocatalytic Activity of Titania Synthesized Using Deinbollia pinnata Leaves, Front. Chem. 8 (2020) 1-11.
DOI: 10.3389/fchem.2020.597980
Google Scholar
[23]
G. Sheveglieri, Gas sensors, Dordrecht, Kluwer, 1992.
Google Scholar
[24]
M.A. Lazar, S. Varghese, S.S. Nair, Photocatalytic water treat meant by Titanium dioxide, Catalysts. 2 (2012) 572–601.
DOI: 10.3390/catal2040572
Google Scholar
[25]
W. Zhang, Y. Li, Y. Su, K. Mao, Q. Wang, Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent, J. Hazard Mater. 215 (2012) 252–8.
DOI: 10.1016/j.jhazmat.2012.02.060
Google Scholar
[26]
R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids Surf B Bio interfaces, 79 (2010) 5–18.
DOI: 10.1016/j.colsurfb.2010.03.029
Google Scholar
[27]
A. Kubacka, M. Diez, D. Rojo, Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium, Sci Rep. 4 (2014) 4134.
DOI: 10.1038/srep04134
Google Scholar
[28]
K. Blecher, A. Nasir, A. Friedman, The growing role of nano technology in combating infectious disease, Virulence. 2 (2011) 95–401.
DOI: 10.4161/viru.2.5.17035
Google Scholar
[29]
H. Selhofer, Titanium oxides for optical-interference coatings, Vac Thin Films. 2 (1999) 20–4.
Google Scholar
[30]
S. Jadoun, R. Arif, N.K. Jangid, R.K. Meena, Green Synthesis of Nanoparticles Using Plant Extracts, Environ. Chem. Lett. 19 (2021) 355–374.
DOI: 10.1007/s10311-020-01074-x
Google Scholar
[31]
N. Jamila, N. Khan, A. Bibi, A. Haider, S. N. Khan, A. Atlas, U. Nishan, A. Minhaz, F. Javed, A. Bibi, Piper Longum Catkin Extract Mediated Synthesis of Ag, Cu, and Ni Nanoparticles and Their Applications as Biological and Environmental Remediation Agents, Arab. J. Chem. 13 (2020) 6425–6436.
DOI: 10.1016/j.arabjc.2020.06.001
Google Scholar
[32]
M. Jayapriya, D. Dhanasekaran, M. Arulmozhi, E. Nandhakumar, N. Senthilkumar, K. Sureshkumar, Green Synthesis of Silver Nanoparticles Using Piper Longum Catkin Extract Irradiated by Sunlight: antibacterial and Catalytic Activity, Res. Chem. Intermed. 45 (2019) 3617-3631.
DOI: 10.1007/s11164-019-03812-5
Google Scholar
[33]
Z.X. Ming, H.J. Li, Dynamic property evaluation of aluminium alloy 2519A by split Hopkinson pressure bar, Trans Nonferrous Met Soc China 18 (2008) 1–5.
DOI: 10.1016/s1003-6326(08)60001-1
Google Scholar
[34]
M.B. Tahir, G. Nabi, N.R. Khalid, M. Rafique, Role of europium on WO3 performance under visible-light for photocatalytic activity. Ceram Int 44 (2018) 5705–5709.
DOI: 10.1016/j.ceramint.2017.12.223
Google Scholar
[35]
G. Rajakumar, A.A. Rahuman, S.M. Roopan, I.M. Chung, K. Anbarasan, V. Karthikeyan, Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangife raindica extract against blood-feeding parasites, Parasitol Res 114 (2015) 571–581.
DOI: 10.1007/s00436-014-4219-8
Google Scholar
[36]
G. Nabi, W. Raza, M.B. Tahir, Green synthesis of TiO2 nano particle using cinnamon powder extract and the study of optical properties, J. InorgOrganometPolym Mater. 30 (2020) 425–1429.
DOI: 10.1007/s10904-019-01248-3
Google Scholar
[37]
R. Sankar, K. Rizwana, K.S. Shivashangari, V. Ravikumar, Ultra-rapid photocatalytic activity of Azadirachtaindica engineered colloidal titanium dioxide nanoparticles, ApplNanosci. 5 (2015) 731–736.
DOI: 10.1007/s13204-014-0369-3
Google Scholar
[38]
G. Nabi, N.R. Khalid, M.B. M. Tahir, Rafique, M. Rizwan, S. Hussain, T. Iqbal, A. Majid, A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts, J. InorgOrganometPolym Mater 28 (2018) 1552–1564.
DOI: 10.1007/s10904-018-0812-0
Google Scholar
[39]
A. Jalill, D.H. Raghad, R.S. Nuaman, A.N. Abd, Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties, World Sci News 49 (2016) 204–222.
Google Scholar
[40]
S.M. Roopan, A. Bharathi, A. Prabhakarn, A.A. Rahuman, K. Velayutham, G. Rajakumar, R.D.M. PadmajaLekshmi, G. Madhumitha, Efficient Phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annonasquamosa peel extract, Spec trochim Acta Part A MolBiomolSpectrosc 98 (2012) 86–90.
DOI: 10.1016/j.saa.2012.08.055
Google Scholar
[41]
T.Y. Suman, R.R.S. Ravindranath, D. Elumalai, P.K. Kaleena, R. Ramkumar, P. Perumal, L. Aranganathan, P.S. Chitrarasu, Larvicidal activity of titanium dioxide nanoparticles synthesized using Morindacitrifolia root extract against Anopheles stephensi, Aedesaegypti and Culexquinquefasciatus and its other effect on non-target fish, Asian Pac J Trop Dis 5 (2015) 224-230.
DOI: 10.1016/s2222-1808(14)60658-7
Google Scholar
[42]
V. Santhoshkumar, AA. Rahuman, C. Jayaseelan, G. Rajakumar, S.A.V.K.J.J.S.K. Marimuthu Kirthi Velayutham Thomas VenkatesanKim, Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties, Asian Pac J. Trop Med. 7 (2014) 968–976.
DOI: 10.1016/s1995-7645(14)60171-1
Google Scholar
[43]
J. Fowsiya, G. Madhumitha, N.A Al-Dhabi, M.V. Arasu, Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles, J. PhotochemPhotobiol B 162 (2016) 395–401.
DOI: 10.1016/j.jphotobiol.2016.07.011
Google Scholar
[44]
M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E. Poinern, Green synthesis of metallic nanoparticles via biological entities, Mater. (Basel). 8 (2015) 7278–308.
DOI: 10.3390/ma8115377
Google Scholar
[45]
A. K. Shimi, H. M. Ahmed, M. Wahab, S. Katheria, S. M. Wabaidur, G. E. Eldesoky, M. A. Islam, K. P. Rane, Synthesis and applications of green synthesized TiO2 nanoparticles for photocatalytic dye degradation and antibacterial activity, J. Nano mater. 2022, (2022) 7060388.
DOI: 10.1155/2022/7060388
Google Scholar
[46]
B. Abebe, Synergetic and charge transfer properties of a metal oxide heterojunction: Photocatalytic activities, Frontiers in Catalysis 2 (2022) 950384.
DOI: 10.3389/fctls.2022.950384
Google Scholar
[47]
N. N. Nagarani, V. J. Vasu, Structural and Optical Characterization of ZnO Thin Films by Sol-Gel Method, Photonics Spintron. 2 (2017) 19–21.
Google Scholar
[48]
J. Chauhan, N. Shrivastav, A. Dugaya, D. Pandey, Synthesis and Characterization of Ni and Cu Doped ZnO, MOJPS 1 (2017) 26–34.
Google Scholar
[49]
P. Kubelka, F. Munk, Ion exchange recovery of palladium (II) from nitrate weak acidic solutions Z. Tech. Phys. 12 (1931) 593–601.
Google Scholar
[50]
P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Structural, optical and morphological analyses of pristine titanium di oxide nanoparticles−Synthesized via sol−gel route, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117 (2014) 622− 629.
DOI: 10.1016/j.saa.2013.09.037
Google Scholar
[51]
J.I. Pankove, Optical Process in Semiconductors, Prentice-Hall, New Jersey, 1971.
Google Scholar
[52]
H. K. Abbood, N. A. Ali, Studying of the structural and optical properties of titanium dioxide nanoparticles prepared by chemical method, J. Opt. 53 (2023) 2698-2703.
DOI: 10.1007/s12596-023-01393-6
Google Scholar
[53]
Y.M. Ghaly, S.T. Jamil, E.I. Seesy, R.E. Souaya, A.R. Nasr, Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2, Chem. Eng. J. 168 (2011) 446-454.
DOI: 10.1016/j.cej.2011.01.028
Google Scholar
[54]
G. Martra, V. Augugliaro, S. Coluccia, Photocatalytic oxidation of gaseous toluene on polycrystalillnne TiO2: FTIR investigation of surface reactivity of different types of catalysts, Stud. Surf. Sci. Catal. 130 (2000) 665-670.
DOI: 10.1016/s0167-2991(00)81034-4
Google Scholar
[55]
S.A. Mansour, A. Farha, M. Kotkata, Sol−Gel Synthesized Co-Doped Anatase TiO2 Nanoparticles: Structural, Optical, and Magnetic Characterization. Journal of Inorganic and Organometallic, Polymers and Materials 29 (2019) 1375−1382.
DOI: 10.1007/s10904-019-01102-6
Google Scholar
[56]
G. Venkatesh, M. Geerthana, S. Prabhu, R. Ramesh, K.M. Prabu, Enhanced photocatalytic activity of reduced graphene oxide/SrSnO3nanocomposite for aqueous organic pollutant degradation, Optik 206 (2020) 164055.
DOI: 10.1016/j.ijleo.2019.164055
Google Scholar
[57]
C. F. Toncón-Leal, J. Villarroel-Rocha, M. T. P. d. Silva, T. P. Braga, K. Sapag, Characterization of mesoporous region by the scanning of the hysteresis loop in adsorption−desorption isotherms, Adsorption 27 (2021) 1109−1122.
DOI: 10.1007/s10450-021-00342-8
Google Scholar
[58]
B. Bharti, S. Kumar, H.-N.Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment, Sci. Rep. 6 (2016) 32355.
DOI: 10.1038/srep32355
Google Scholar
[59]
F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles, Sci. Rep. 8 (2018) 7104.
DOI: 10.1038/s41598-018-25673-5
Google Scholar
[60]
Z. Matouk, M. Islam, M. Gutiérrez, J. Pireaux, A . Achour, X-ray Photoelectron Spectroscopy (XPS) Analysis of Ultrafine Au Nanoparticles Supported Over Reactively Sputtered TiO2 Films, Nanomaterials 12 (2022) 3692.
DOI: 10.3390/nano12203692
Google Scholar
[61]
Z.P. Zhang, S.S. Feng, In-vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy, Biomacromolecules 7 (2006) 1139-1146.
DOI: 10.1021/bm050953v
Google Scholar
[62]
M.T. Martinez, M.A. Callejas, A.M. Benito, M. Cochet, T. Seeger, A. Anson, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, J.L.G. Fierro, W.K. Maser, Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation, Carbon 41 (2003) 2247–2256.
DOI: 10.1016/s0008-6223(03)00250-1
Google Scholar