Machine Learning-Based Prediction of Hardness in Electrodeposited Nickel-Tungsten Alloy Coatings

Article Preview

Abstract:

This study aims to predict the hardness of electrodeposited Ni-W alloy coatings by combining machine learning methods based on a small dataset, with the goal of streamlining the trial-and-error process and reducing experimental costs. In this study, 11 features comprised of electrolyte compositions and process parameters (including current density, pH value, bath temperature, and agitation) were utilized as input parameters, with coating hardness serving as the target value. Two machine learning models (KNN and Elastic-Net) were employed to predict coating hardness, and hyperparameters were tuned using Randomized-Search CV (CV=5). The results demonstrate that the KNN model exhibits the highest predictive accuracy, with R2=0.942 and RMSE=0.0658. The SHAP method was used to analyze the importance of features and their impact on hardness. It is found that bath temperature, current density, and ammonium chloride concentration have the most significant influence on coating hardness. This study demonstrates how machine learning can enhance electrodeposition to predict coating hardness, offering insights for improving Ni-W alloy coatings in mechanical applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1154)

Pages:

25-30

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.H. Allahyarzadeh, M. Aliofkhazraei, A.R. Rezvanian, V. Torabinejad, and A.S. Rouhaghdam: Surface and Coatings Technology Vol. 307 (2016), p.978–1010.

DOI: 10.1016/j.surfcoat.2016.09.052

Google Scholar

[2] S. Lee, M. Choi, S. Park, H. Jung, and B. Yoo: Electrochimica Acta Vol. 153 (2015), p.225–231.

Google Scholar

[3] M. Benaicha, M. Allam, A. Dakhouche, and M. Hamla: International Journal of Electrochemical Science Vol. 11 (2016), p.7605–7620.

DOI: 10.20964/2016.09.17

Google Scholar

[4] H. Wang, R. Liu, F. Cheng, Y. Cao, G. Ding, and X. Zhao: Microelectronic Engineering Vol. 87 (2010), p.1901–1906.

Google Scholar

[5] M. Haj-Taieb, A.S.M.A. Haseeb, J. Caulfield, K. Bade, J. Aktaa, and K.J. Hemker: Microsyst Technol Vol. 14 (2008), p.1531–1536.

DOI: 10.1007/s00542-007-0536-5

Google Scholar

[6] S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.-J. Kim, J.H. Jang, H. Kim, and S.-K. Kim: Applied Surface Science Vol. 349 (2015), p.629–635.

DOI: 10.1016/j.apsusc.2015.05.040

Google Scholar

[7] K.R. Sriraman, S.G.S. Raman, and S.K. Seshadri: Materials Science and Engineering: A Vol. 418 (2006), p.303–311.

Google Scholar

[8] M. Bratoeva and N. Atanasov: Russ J Electrochem Vol. 36 (2000), p.60–63.

Google Scholar

[9] R. Katirci, H. Aktas, and M. Zontul: Transactions of the IMF Vol. 99 (2021), p.162–168.

Google Scholar

[10] S. Ajay Vikram, A. Kanase, K. Siewert, Daniel Rosenkranz, R. Singh, P. Laux, and A. Luch: ACS Appl. Mater. Interfaces Vol. 13 (2021), p.1943–1955.

DOI: 10.1021/acsami.0c18470

Google Scholar

[11] S.-D. Bolboaca and L. Jäntschi: Leonardo Journal of Sciences Vol. 5 (2006), p.179–200.

Google Scholar

[12] Y. Diao, L. Yan, and K. Gao: Materials & Design Vol. 198 (2021), p.109326.

Google Scholar

[13] Y. Wu, D. Chang, D. Kim, and S.-C. Kwon: Surface and Coatings Technology Vol. 173 (2003), p.259–264.

Google Scholar

[14] A. Giga, Y. Kimoto, Y. Takigawa, and K. Higashi: Scripta Materialia Vol. 55 (2006), p.143–146.

DOI: 10.1016/j.scriptamat.2006.03.047

Google Scholar

[15] O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, and E. Gileadi: Langmuir Vol. 17 (2001), p.8270–8275.

DOI: 10.1021/la010660x

Google Scholar