pH-Dependent Visible Light Photocatalytic Efficiency of Aminophenol-Functionalized ZnO for Brilliant Blue G Degradation

Article Preview

Abstract:

Zinc oxide (ZnO) is a common photocatalyst for dye degradation, but its efficiency is limited by surface properties, photocorrosion, and pH sensitivity. This study functionalized ZnO with 2-aminophenol (ZnO-AP) to enhance dye adsorption and stability under varying pH. FTIR, XRD, and UV-Vis confirmed successful synthesis, with ZnO-AP showing a reduced band gap for improved visible light absorption. Photodegradation tests using Brilliant Blue G (BBG) revealed that ZnO-AP has the highest efficiency (36.17%) at pH 4, driven by strong electrostatic interactions. Performance decreased at pH 7 and 11 due to reduced dye adsorption, especially at basic pH with electrostatic repulsion. Functionalization also protected ZnO against photocorrosion, improving stability in acidic conditions. These results highlight 2-AP functionalization as a promising strategy to enhance the photocatalytic performance of ZnO across pH ranges.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1154)

Pages:

73-78

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lopez, E. C. R., & Perez, J. V. D. (2023). PAN/PVP/CD-MOF composite beads for the removal of Crystal Violet and Brilliant Blue G in water. Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2023.09.178

Google Scholar

[2] Seker, S., & Karaaslan Ayhan, N. (2023). Adsorption potential of neodymium/alginate beads for removal of Congo red and Brilliant blue G from aqueous solution. International Journal of Environmental Science and Technology, 20(7), 7293–7304.

DOI: 10.1007/s13762-023-04794-z

Google Scholar

[3] Panghulan, G. R., Vasquez, M. R., Jr., Edañol, Y. D., Chanlek, N., & Payawan, L. M., Jr. (2020). Synthesis of TiN/N-doped TiO₂ composite films as visible light active photocatalyst. Journal of Vacuum Science & Technology B, 38(6), 62203.

DOI: 10.1116/6.0000304

Google Scholar

[4] Buenviaje, S. C., Jr., Edañol, Y. D. G., Legaspi, E. D. R., Payawan, L. M., Jr., & Usman, K. A. S. (2021). One-pot synthesis of redispersible polymer-stabilized ZnO nanocomposites. Philippine Journal of Science, 150.

DOI: 10.56899/150.6a.07

Google Scholar

[5] Buenviaje, S. C. J., Usman, K. A. S., Edañol, Y. D. G., Maylem, G. P., & Payawan, L. M., Jr. (2020). One-pot photochemical synthesis of solution-stable TiO₂-polypyrrole nanocomposite for the photodegradation of methyl orange. Key Engineering Materials, 853, 217–222.

DOI: 10.4028/www.scientific.net/kem.853.217

Google Scholar

[6] Sisican, K. M. D., Usman, K. A. S., Bacal, C. J. O., Edañol, Y. D. G., & Conato, M. T. (2023). Benzoic acid modulation of MIL-88B(Fe) nanocrystals toward tunable synthesis of MOF-based Fenton-like degradation catalysts. Crystal Growth & Design, 23(12), 8509–8517.

DOI: 10.1021/acs.cgd.3c00266

Google Scholar

[7] Merca, S. M. O., et al. (2024). Tuned photodegradation efficiency of bimetallic copper-iron oxide catalysts via precursor stoichiometry control for water decontamination. Advanced Science and Technology, 151, 25–31.

DOI: 10.4028/p-umwd6s

Google Scholar

[8] Weng, B., Qi, M.-Y., Han, C., Tang, Z.-R., & Xu, Y.-J. (2019). Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catalysis, 9(5), 4642–4687.

DOI: 10.1021/acscatal.9b00313

Google Scholar

[9] Rodwihok, C., et al. (2021). Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline. Journal of Materials Science & Technology, 76, 1–10.

DOI: 10.1016/j.jmst.2020.09.041

Google Scholar

[10] Masud, R. A., et al. (2020). Preparation of novel chitosan/poly(ethylene glycol)/ZnO bionanocomposite for wound healing application: Effect of gentamicin loading. Materialia, 12, 100785.

DOI: 10.1016/j.mtla.2020.100785

Google Scholar

[11] Coussot, G., et al. (2011). A rapid and reversible colorimetric assay for the characterization of aminated solid surfaces. Analytical and Bioanalytical Chemistry, 399(3), 1061–1069.

DOI: 10.1007/s00216-010-4363-7

Google Scholar

[12] Saif Al Essai, K. R., et al. (2024). Enhanced mitigation of acidic and basic dyes by ZnO-based nano-photocatalysis: Current applications and future perspectives. Environmental Geochemistry and Health, 46(4), 139.

DOI: 10.1007/s10653-024-01935-2

Google Scholar

[13] Thatikayala, D., et al. (2020). Enhanced photocatalytic and antibacterial activity of ZnO/Ag nanostructure synthesized by Tamarindus indica pulp extract. Journal of Materials Science: Materials in Electronics, 31(7), 5324–5335.

DOI: 10.1007/s10854-020-03093-4

Google Scholar

[14] Mohamed, Z. H., et al. (2023). Enhanced photocatalytic degradation of the antidepressant sertraline in aqueous solutions by zinc oxide nanoparticles. Water, 15(11).

DOI: 10.3390/w15112074

Google Scholar