[1]
K.M. Shwetha, B.M. Praveen, and K.D. Bharath (2024). A review on corrosion inhibitors, types, mechanisms, electrochemical analysis, corrosion rate and efficiency of corrosion inhibitors on mild steel in an acidic environment. Surface and Interfaces, 16(1), (2024) p.100258.
DOI: 10.1016/j.rsurfi.2024.100258
Google Scholar
[2]
P.B. Matad, P.B. Mokshanatha, N. Hebbar, V.T. Venkatesha, H.C. Tandon (2014). Ketosulfone drug as a green corrosion inhibitor for mild steel in acidic medium. Industrial Engineering Chemistry Research. 53(20), p.8436 – 8444.
DOI: 10.1021/ie500232g
Google Scholar
[3]
S. Valadaraj, B. Shreeprakash, B.M. Praveen, B.K. Devendra (2022). The effect of graphene content on the corrosion and mechanical properties of an electrodeposited Ni-Graphene coating. Applied Surface Science Advances11, (2022), p.100310.
DOI: 10.1016/j.apsadv.2022.100310
Google Scholar
[4]
A.S. Abdulrahman, H. Ibrahim, V. Aigbodion, K. Ganiyu and C. Awe (2024). Thermodynamic Behaviour of Mild Steel Corrosion in an Environment of Bilberry Cactus Plant Extracts in Hydrochloric Acid Solution. Journal of Metallurgy and Materials Engineering. 9 (1) pp.1-14.
DOI: 10.62934/jmme.9.1.2014.1-14
Google Scholar
[5]
A.O. Okewale and A. Olaitan (2017). The Use of Rubber leaf Extract as a Corrosion Inhibitor for Mild Steel in Acidic Solution, International Journal of Materials and Chemistry 7(1) PP 5-13, 2017.
Google Scholar
[6]
S.U. Nwigwe, R. Umumakwe, S.O. Mbam and M. Yibowei, K. Okon, and G. Kalu-Uka (2019). The inhibition of Carica Papaya leaves extracts on the corrosion of cold worked and annealed mild steel in Hydrochlori Acid and Sodium Hydroxide solutions using a weight loss technique. Journal of Engineering and Applied Science Research 46(2), pp.114-119, 2019.
Google Scholar
[7]
S.H. Fakir, K.C. Kumar, H. Ali, J. Rawat and I.H. Farooqi (2023). Synthesis and evaluation of green corrosion inhibitor from rice husk to mitigate corrosion of carbon steel in Sodiun Chloride environment. Materials Today Proceedings 82, pp.29-37, 2023.
DOI: 10.1016/j.matpr.2022.11.147
Google Scholar
[8]
A.S. Abdulrahman, A. Kareem, H. Ganiyu, H.K. Ibrahim and A.I. Caroline. (2015). The Corrosion Inhibition of Mild Steel in Sulphuric Acid Solution by Adsorption of African Perquetina Leaves Extract. International Journal of Innovative Research in Science, Engineering and Technology. 4(4), 1809- 1821.
DOI: 10.15680/ijirset.2015.0404002
Google Scholar
[9]
S. Deli, Li. Dong, Li. Weizhou, Li. Weizhou, Liu. Hongwu and Li. Haowu (2023). Synergistic effect of an organic hydrophobic film deposited on MAO containing NaH2PO4 for enhanced corrosion resistance of 6063 aluminum alloy. Journal of Material Research and Technology 25, pp.3598-3609.
DOI: 10.1016/j.jmrt.2023.06.158
Google Scholar
[10]
T. Rita Ovari, G. Kotona, M. Kolos, G. Zsabo and L. M. Muresan (2023). Corrosion bahaviour of Zinc coated with composite silica layers incorporating poly (amidoamine)-modified graphene-oxide. Journal of solid-state electrochemistry, 27(1), p.1795 – 1811.
DOI: 10.1007/s10008-022-05358-w
Google Scholar
[11]
Ma. Yangi, H. Haowei, Z, Hongda, G. Micheal, S. James and S. Xinxin (2021). Superior anti-corrosin and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide. Journal of Materials Science and Technology, 95(10), pp.95-104.
DOI: 10.1016/j.jmst.2021.04.019
Google Scholar
[12]
K.M. Shwetha, B.M. Praveen and K.D. Bharath (2024). A Review on Corrosion Inhibitors, Types, Mechanisms, Electrochemical Analysis, Corrosion Rate and Efficiency of Corrosion Inhibitors on Mild Steel in an Acidic Environment. Results in Surfaces and Interfaces, (2024) 100258.
DOI: 10.1016/j.rsurfi.2024.100258
Google Scholar
[13]
H.F. Shasanowar, C.K. Kumar, A. Hamid, R. Jaya and H.F. Izharul (2023). Synthesis and Evaluation of green corrosion inhibitor from rice husk to mitigate corrosion of carbon steel in NaCl environment. Material Today Proceedings 82, pp.29-37, 2023.
DOI: 10.1016/j.matpr.2022.11.147
Google Scholar
[14]
A. Yadav, R. Kumar and B. Sahoo (2020). Graphene Oxide Coatings on amino acid modified Fe surfaces for corrosion inhibition. Journal of ACS Applied Nano Materials 3(4), pp.3540-3557.
DOI: 10.1021/acsanm.0c00243
Google Scholar
[15]
B. Elsy, R. Maria and C. Jimmy (2025). Graphene oxide from rice husks ash with copper nanoparticles immobilized synthesis and application in catalytic dye degradation. Journal of Dispersion Science and Technology, 1(1), pp.1-11, 2025.
DOI: 10.1080/01932691.2025.2474618
Google Scholar
[16]
Z.Li.X. Cui, X. Bai, X. Ren and X. Ou (2023). A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode. Energy Storage Materials, 57(2), pp.14-43.
DOI: 10.1016/j.ensm.2023.02.003
Google Scholar
[17]
I. da S. Hemandes, J.N. da Cunha, C.A. Santana, J.G.A. Rodiques and E. D'Elia. (2020). Application of an aqueous extract of cotton seed as a corrosion inhibitor for mild steel in HCl media. Materials Research 24(1), p.0235,2020.
DOI: 10.1590/1980-5373-mr-2020-0235
Google Scholar
[18]
V. Mahalingam, M. Sivaraju, G.S. Kumar, K. Laithambigai, S.R. Priyan and M.M. Alam (2024). Synergetic effect of silica/polypyrrole nanocomposites synthesized by hydrothermal method using rice husk as a silica source for corrosion protection. Materials Chemistry and Physics 313, 128752,2024.
DOI: 10.1016/j.matchemphys.2023.128752
Google Scholar
[19]
B.T. Ashwini, P. Sachin, B.M. Praveen, B.M. Prasanna and A.M. Guruprasad (2025). Corrosion Inhibition Action of Gripizide against Mild Steel Corrosion in 1M Hydrochloric Acid. Experimental, Theoretical and Quantum studies. Moroccan Journal of Chemistry13(3), p.1137.
DOI: 10.1016/j.surfin.2020.100478
Google Scholar
[20]
C. Bhawna, K.S. Ashish, T. Sanjeeve, P. Balaram, L.III-Min, Hassane and E.E. Eno (2020). Comparative Investigation of Corrosion-Mitigation Behaviour of Thiadiazole-Derived Bis-Schiff Bases for Mild Steel in Acid Medium: Experimental, Theoretical and Surface Study. ACS omega, 5(23), p.13503 – 13520.
DOI: 10.1021/acsomega.9b04274
Google Scholar