High Temperature Deformation Behavior of a Ti-45.5Al-2Cr-4Nb-0.4B Intermetallic Compound

Abstract:

Article Preview

High temperature deformation behavior of a Ti-Al intermetallic compound has been investigated in this study. Specimens with a near gamma and a lamella structure were obtained by performing heat treatment at temperatures from 1200 to 1330°C for 24 hr, respectively, and stabilized at 900°C for 4 hr followed by air cooling. A series of load relaxation tests has been conducted on these samples at temperatures ranging from 850 to 950°C to construct flow curves in the strain rate range from 10-6/s to 10-3/s. Strain hardening was observed even at the temperature of 950°C in both the near gamma and the lamella structures. Further aging treatment for 12 hr at the test temperatures has been found to cause negligible softening in both microstructures, providing the strong applicability of this alloy system in the temperature range.

Info:

Periodical:

Materials Science Forum (Volumes 449-452)

Edited by:

S.-G. Kang and T. Kobayashi

Pages:

829-832

DOI:

10.4028/www.scientific.net/MSF.449-452.829

Citation:

T. K. Ha and J. Y. Jung, "High Temperature Deformation Behavior of a Ti-45.5Al-2Cr-4Nb-0.4B Intermetallic Compound", Materials Science Forum, Vols. 449-452, pp. 829-832, 2004

Online since:

March 2004

Export:

Price:

$38.00

[1] Y. W. Kim: J. Metals, 47 (1995), pp.39-41.

[2] R. W. Hayes and B. London: Acta Metall., 40 (1992), p.2167.

[3] P. L. Martin, M. G. Mendiratta and H. A. Lipsitt: Metall. Trans., 14A (1983), p.2170.

[4] Y. W. Kim and F. H. Rroes: High Temperature Aluminides and Intermetallics, ed. S.H. Wang et al, (Warrendale, PA: TMS, 1990), pp.465-492.

[5] E. L. Hall and S. C. Huang : High Temperature Ordered Intermetallics Alloys III, ed. C.T. Liu et. al, (Pittsburgh, PA: Materials Research Society, 1989), pp.693-698.

[6] S. L. Semiatin, D. C. Vollmer, S. El-Soudani, and C. Su: Scripta Metall. Mater., 25 (1991), p.1409.

[7] H. E. Deve, A. G. Evans, and D. S. Shih: Acta Metall. Mater., 40 (1992), p.1259.

[8] T. Kawabata, T. Kanai and O. Izumi: Acta Metall. Mater., 33 (1985), pp.1355-66.

[9] M. Nobuki. T. Tsujimoto: Iron and Steel Inst. Jpn. Int. 31(1991), pp.931-937.

[10] P. Bania: J. Metals, 40(3) (1988), p.20.

[11] D. Lee and E.W. Hart: Metall. Trans., 106 (1971), p.1245.

[12] O. D. Sherby, and J. Wadsworth: Prog. Mater. Sci., 33 (1989), p.169. -7 -6 -5 -4 -3 -2.

[1] 0.

[1] 2.

[1] 4.

[1] 6.

[1] 8.

[2] 0.

[2] 2.

[2] 4.

[2] 6 A, 850oC log strain rate log stress (MPa).

6.

[2] 1.

[3] 1% 12h aging, 1. 2% -7 -6 -5 -4 -3 -2.

[1] 4.

[1] 5.

[1] 6.

[1] 7.

[1] 8.

[1] 9.

[2] 0.

[2] 1.

[2] 2.

[2] 3 log stress (MPa) log strain rate.

[1] 9.

[2] 9% 12h aging, 1. 0% 12h aging, 2. 1% -7 -6 -5 -4 -3 -2.

[1] 7.

[1] 8.

[1] 9.

[2] 0.

[2] 1.

[2] 2.

[2] 3.

[2] 4 C, 850oC log stress (MPa) log strain rate 1. 1.

[2] 6% -7 -6 -5 -4 -3 -2.

[1] 0.

[1] 2.

[1] 4.

[1] 6.

[1] 8.

[2] 0.

[2] 2.

[2] 4.

[1] 3.

[2] 2% 12h aging, 1. 5% log strain rate log stress (MPa) C, 950oC.

In order to see related information, you need to Login.