Segregation Effects on the Metal-Carbide Interface

Article Preview

Abstract:

We employ density functional calculations to investigate the doped Al/TiC interfaces. The effects of different segregation atoms are discussed. The results show that the different transition metal atoms have different effects on the adhesion. Results of analysis of atom size and electronic structure have shown that both atom size and activity of the doped atom influence on the adhesion. Our results are consistent with other results of doped metal-oxide interface.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

4251-4254

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.W. Finnis: J. Phys.: Condens. Mat. Vol. 8 (1996), p.5811.

Google Scholar

[2] Chun Li, Ruqian Wu, A.J. Freeman, and C.L. Fu: Phys. Rev. B Vol. 48 (1993), p.8317.

Google Scholar

[3] A. Bogicevic and D.R. Jennison: Phys. Rev. Lett. Vol. 82 (1999), p.799.

Google Scholar

[4] W. Zhang and J.R. Smith: Phys. Rev. Lett. Vol. 85 (2000), p.3225.

Google Scholar

[5] Y.F. Zhukovskii, E.A. Kotomin, P.W.M. Jacobs, and A. M. Stoneham: Phys. Rev. Lett. Vol. 84 (2000), p.1256.

Google Scholar

[6] I.G. Batyrev, A. Alavi, and M.W. Finnis: Phys. Rev. B Vol. 62(2000), p.4698.

Google Scholar

[7] D.J. Siegel, L.G. Hector Jr., and, J.B. Adams: Phys. Rev. B Vol. 65(2002), p.085415.

Google Scholar

[8] E.A.A. Jarvis and E.A. Carter: J. Am. Ceram. Soc. Vol. 86 (2003), p.373.

Google Scholar

[9] A. Christensen and E.A. Carter: J. Chem. Phys. Vol. 114 (2001), p.5816.

Google Scholar

[10] S.V. Dudiy, J. Hartford, and B.I. Lundqvist: Phys. Rev. Lett. Vol. 85 (2000), p.1898.

Google Scholar

[11] D.J. Siegel, L.G. Hector Jr., and J.B. Adams: Acta. Mater. Vol. 50 (2002), p.619.

Google Scholar

[12] L.M. Liu, S.Q. Wang, and H.Q. Ye: Surf. Interface. Anal. Vol. 35 (2003), p.835.

Google Scholar

[13] L.M. Liu, S.Q. Wang, and H.Q. Ye: J. Mater. Sci. Tech. Vol. 19 (2003), p.540.

Google Scholar

[14] A. Arya and E.A. Carter: J. Chem. Phys. Vol. 118 (2003), p.8982.

Google Scholar

[15] D.J. Siegel, L.G. Hector Jr., and J.B. Adams: Phys. Rev. B Vol. 67 (2003), p.092105.

Google Scholar

[16] L.M. Liu, S.Q. Wang, and H.Q. Ye: Surf. Sci. Vol. 550 (2004), p.835.

Google Scholar

[17] L.M. Liu, S.Q. Wang, and H.Q. Ye: J. Phys: Condens. Matter. Vol. 15 (2003), p.8103.

Google Scholar

[18] L. Hansen et al., Dacapo-1. 30, Center for Atomic Scale Materials Physics (CAMP), Demark Technical University.

Google Scholar

[19] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

Google Scholar

[20] W. Kohn and L.J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133.

Google Scholar

[21] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

Google Scholar

[22] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.A. Pederson, D.J. Singh, C. Fiolhais: Phys. Rev. B Vol. 46 (1992), p.6671.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[23] G. Kresse and J. Furthmüller: Comput. Mater. Sci. Vol. 6 (1995), p.15.

Google Scholar

[24] H.J. Monkhorst, J.D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar