Correlationship between Microscopic Observations and Electrochemical Behaviour of Different Kind of Galvanized Steel

Abstract:

Article Preview

Zinc anodic dissolution has been studied according to the steel galvanized method by means of the electrochemical impedance spectroscopy (EIS) and microscopic observations. Relevant information on the galvanized method is provided by the analysis of experimental data. The galvanized method has no influence on the kinetics parameters of the zinc anodic dissolution process. The galvanized method only changes the surface texture of the working electrode. Thus, the EIS fitting allows to calculate the fractal dimension of the surface of the working electrode.

Info:

Periodical:

Materials Science Forum (Volumes 480-481)

Edited by:

A. Méndez-Vilas

Pages:

345-350

DOI:

10.4028/www.scientific.net/MSF.480-481.345

Citation:

J.J. García-Jareño et al., "Correlationship between Microscopic Observations and Electrochemical Behaviour of Different Kind of Galvanized Steel", Materials Science Forum, Vols. 480-481, pp. 345-350, 2005

Online since:

March 2005

Export:

Price:

$35.00

[1] E. Ahlberg and H. Anderson. Acta Chem. Scand. 46 (1992) 15.

[2] E.B. Yousfi, J. Fouache and D. Lincot. Appl. Surf. Sci. 153 (2000) 223.

[3] O. A. Ashiru and J. Shirokoff. Appl. Surf. Sci. 103 (1996) 159.

[4] O. Devos, O. Aaboubi, JP. Chopart, E. Merienne, A. Olivier, C. Gabrielli and B. Tribollet. J. Phys. Chem. B 103 (1999) 496.

[5] C. Cachet, F. Ganne, G. Maurin, J. Petitjean, V. Vivier and R. Wiart. Electrochim. Acta 47 (2001) 509.

DOI: 10.1016/s0013-4686(01)00740-x

[6] T. Tsai, Y. Wu and S. Yen. Appl. Surf. Sci. 214 (2003) 120.

[7] A. Ahlberg and H. Anderson. Acta Chem. Scand. 47 (1993) 1162.

[8] G. A. McRae, M. A. Maguire, C. A. Jeffrey, D. A. Guzonas and C. A. Brown. Appl. Surf. Sci. 191 (2002) 94.

[9] S. A. M. Refaey and G. Schwitzgebel. Appl. Surf. Sci. 135 (998) 243.

[10] S. Chesters, H. Y. Wen, M. Lundin and G. Kasper. Appl. Surf. Sci. 40 (1989) 185.

[11] A.P. Pentland. IEEE T. Pattern Anal. 6 (1984) 661.

[12] S. Peleg, J. Naor, R. Hartley and D. Avnir. IEEE T. Pattern Anal. 6 (1984) 518.

[13] M.K. Biswas, T. Ghose, S. Guha and P.K. Biswas. Pattern Recogn. Lett. 19 (1998) 309.

[14] K.L. Chan. IEEE T. Bio. -Med. Eng. 42 (1995) 1033.

[15] C.C. Chen, J.S. Daponte and M.D. Fox. IEEE T. Med. Imaging 8 (1989) 133.

[16] K. Liao, P. Cavalieri and J. Pitts. T. ASAE 33 (1990) 298.

[17] T. Ohtsuka and A. Komori. Electrochim. Acta 43 (1998) 3269.

[18] J.R. Macdonald. Solid State Ionics 58 (1992) 97.

[19] F. Vicente, A. Roig, J.J. García Jareño and A. Sanmatías. Procesos electródicos del Nafión y del Azul de Prusia/Nafion sobre electrodo transparente óxido de Indio-Estaño: Un modelo de electrodos multicapa. Ed. Moliner 40, Burjassot, (2001).

[20] R. Wiart. Electrochim. Acta 35 (1990) 1587.

[21] D. Giménez-Romero, J.J. García-Jareño and F. Vicente. J. Electoanal. Chem. In Pres.

[22] D. Giménez-Romero, J.J. García-Jareño and F. Vicente. Electrochem. Commum. 5 (2003) 722.

[23] Y.B. Wang, R.K. Yuan and M. Willander. Appl. Phys. A 63 (1996) 481.

[24] N. Sarkar and B.B. Chaudhuri. Pattern Recogn. 25 (1992) 1035.

[25] N. Sarkar and B.B. Chaudhuri. IEEE T. Syst. Man Cyb. 24 (1994) 115.

[26] J. Navarro-Laboulais, J. Trijueque and F. Vicente. Materiales y Procesos Electródicos (II), Ed. INSDE, Burjassot, 2003, Ch. 15.

In order to see related information, you need to Login.