Correlationship between Microscopic Observations and Electrochemical Behaviour of Different Kind of Galvanized Steel

Article Preview

Abstract:

Zinc anodic dissolution has been studied according to the steel galvanized method by means of the electrochemical impedance spectroscopy (EIS) and microscopic observations. Relevant information on the galvanized method is provided by the analysis of experimental data. The galvanized method has no influence on the kinetics parameters of the zinc anodic dissolution process. The galvanized method only changes the surface texture of the working electrode. Thus, the EIS fitting allows to calculate the fractal dimension of the surface of the working electrode.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 480-481)

Pages:

345-350

Citation:

Online since:

March 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Ahlberg and H. Anderson. Acta Chem. Scand. 46 (1992) 15.

Google Scholar

[2] E.B. Yousfi, J. Fouache and D. Lincot. Appl. Surf. Sci. 153 (2000) 223.

Google Scholar

[3] O. A. Ashiru and J. Shirokoff. Appl. Surf. Sci. 103 (1996) 159.

Google Scholar

[4] O. Devos, O. Aaboubi, JP. Chopart, E. Merienne, A. Olivier, C. Gabrielli and B. Tribollet. J. Phys. Chem. B 103 (1999) 496.

DOI: 10.1021/jp9835263

Google Scholar

[5] C. Cachet, F. Ganne, G. Maurin, J. Petitjean, V. Vivier and R. Wiart. Electrochim. Acta 47 (2001) 509.

DOI: 10.1016/s0013-4686(01)00740-x

Google Scholar

[6] T. Tsai, Y. Wu and S. Yen. Appl. Surf. Sci. 214 (2003) 120.

Google Scholar

[7] A. Ahlberg and H. Anderson. Acta Chem. Scand. 47 (1993) 1162.

Google Scholar

[8] G. A. McRae, M. A. Maguire, C. A. Jeffrey, D. A. Guzonas and C. A. Brown. Appl. Surf. Sci. 191 (2002) 94.

Google Scholar

[9] S. A. M. Refaey and G. Schwitzgebel. Appl. Surf. Sci. 135 (998) 243.

Google Scholar

[10] S. Chesters, H. Y. Wen, M. Lundin and G. Kasper. Appl. Surf. Sci. 40 (1989) 185.

Google Scholar

[11] A.P. Pentland. IEEE T. Pattern Anal. 6 (1984) 661.

Google Scholar

[12] S. Peleg, J. Naor, R. Hartley and D. Avnir. IEEE T. Pattern Anal. 6 (1984) 518.

Google Scholar

[13] M.K. Biswas, T. Ghose, S. Guha and P.K. Biswas. Pattern Recogn. Lett. 19 (1998) 309.

Google Scholar

[14] K.L. Chan. IEEE T. Bio. -Med. Eng. 42 (1995) 1033.

Google Scholar

[15] C.C. Chen, J.S. Daponte and M.D. Fox. IEEE T. Med. Imaging 8 (1989) 133.

Google Scholar

[16] K. Liao, P. Cavalieri and J. Pitts. T. ASAE 33 (1990) 298.

Google Scholar

[17] T. Ohtsuka and A. Komori. Electrochim. Acta 43 (1998) 3269.

Google Scholar

[18] J.R. Macdonald. Solid State Ionics 58 (1992) 97.

Google Scholar

[19] F. Vicente, A. Roig, J.J. García Jareño and A. Sanmatías. Procesos electródicos del Nafión y del Azul de Prusia/Nafion sobre electrodo transparente óxido de Indio-Estaño: Un modelo de electrodos multicapa. Ed. Moliner 40, Burjassot, (2001).

Google Scholar

[20] R. Wiart. Electrochim. Acta 35 (1990) 1587.

Google Scholar

[21] D. Giménez-Romero, J.J. García-Jareño and F. Vicente. J. Electoanal. Chem. In Pres.

Google Scholar

[22] D. Giménez-Romero, J.J. García-Jareño and F. Vicente. Electrochem. Commum. 5 (2003) 722.

Google Scholar

[23] Y.B. Wang, R.K. Yuan and M. Willander. Appl. Phys. A 63 (1996) 481.

Google Scholar

[24] N. Sarkar and B.B. Chaudhuri. Pattern Recogn. 25 (1992) 1035.

Google Scholar

[25] N. Sarkar and B.B. Chaudhuri. IEEE T. Syst. Man Cyb. 24 (1994) 115.

Google Scholar

[26] J. Navarro-Laboulais, J. Trijueque and F. Vicente. Materiales y Procesos Electródicos (II), Ed. INSDE, Burjassot, 2003, Ch. 15.

Google Scholar