Influence of Al2O3 Addition on the Microstructure and Mechanical Properties of Pressureless Sintered Ce-TZP

Abstract:

Article Preview

Mixtures of 12 mol% CeO2-stabilised ZrO2 with 5 to 20 wt % Al2O3 were prepared and densified through pressureless sintering in air at 1450° C for 1 to 4 h. The influence of the Al2O3 content and sintering time on the phase constitution, microstructure and mechanical properties of the as-sintered composites were investigated. Fully dense Ce-TZP/Al2O3 ceramics with a good combination of hardness and fracture toughness can be obtained by pressureless sintering in air for only 1 h. The addition of Al2O3 to Ce-TZP improves the mechanical properties and suppresses ZrO2 grain growth. The average ZrO2 grain size increases with increasing sintering time and decreasing Al2O3 content. This leads to an increase in toughness. An excellent fracture toughness of 14.3 MPam1/2 in combination with a Vickers hardness of 9.14 GPa was obtained for 12 mol % CeO2-TZP with 5 wt % Al2O3, sintered for 4 h.

Info:

Periodical:

Materials Science Forum (Volumes 492-493)

Edited by:

Omer Van der Biest, Michael Gasik, Jozef Vleugels

Pages:

783-0

DOI:

10.4028/www.scientific.net/MSF.492-493.783

Citation:

S. G. Huang et al., "Influence of Al2O3 Addition on the Microstructure and Mechanical Properties of Pressureless Sintered Ce-TZP ", Materials Science Forum, Vols. 492-493, pp. 783-0, 2005

Online since:

August 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.