Influence of Al2O3 Addition on the Microstructure and Mechanical Properties of Pressureless Sintered Ce-TZP

Article Preview

Abstract:

Mixtures of 12 mol% CeO2-stabilised ZrO2 with 5 to 20 wt % Al2O3 were prepared and densified through pressureless sintering in air at 1450° C for 1 to 4 h. The influence of the Al2O3 content and sintering time on the phase constitution, microstructure and mechanical properties of the as-sintered composites were investigated. Fully dense Ce-TZP/Al2O3 ceramics with a good combination of hardness and fracture toughness can be obtained by pressureless sintering in air for only 1 h. The addition of Al2O3 to Ce-TZP improves the mechanical properties and suppresses ZrO2 grain growth. The average ZrO2 grain size increases with increasing sintering time and decreasing Al2O3 content. This leads to an increase in toughness. An excellent fracture toughness of 14.3 MPam1/2 in combination with a Vickers hardness of 9.14 GPa was obtained for 12 mol % CeO2-TZP with 5 wt % Al2O3, sintered for 4 h.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 492-493)

Pages:

783-0

Citation:

Online since:

August 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Hirano and H. Inada: J. Mater. Sci. Vol. 27 (1992), p.3511.

Google Scholar

[2] RHJ. Hannink, PM. Kelly and BC. Muddle: J Am. Ceram. Soc. Vol. 83 (2000), p.461.

Google Scholar

[3] JD. Cawley: Materials Science and Technology. Structure and properties of ceramics 11. (VCH, Weinheim, Germany) (1994), p.101.

Google Scholar

[4] T. Sato and M. Shimada: Am. Ceram. Soc. Bull. Vol. 64 (1985), p.1382.

Google Scholar

[5] K. Haussner and N. Claussen: J. Am. Ceram. Soc. Vol. 72 (1989), p.1044.

Google Scholar

[6] GSAM. Theunissen, AJA. Winnubst and AJ. Burggraaf: J. Eur. Ceram. Soc. Vol. 9 (1992), p.251.

Google Scholar

[7] R.A. Cutler, R. J. Mayhew and K. M. Prettyman: J. Am. Ceram. Soc. Vol. 74 (1991), p.179.

Google Scholar

[8] D.B. Marshall, J.J. Ratto and F.F. Lange: J. Am. Ceram. Soc. Vol. 74 (1991), p.2979.

Google Scholar

[9] A. Bleier, P. F. Becher and K. B. Alexander: J. Am. Ceram. Soc. Vol. 75 (1992), p.2619.

Google Scholar

[10] M. Hirano and H. Inada: Br. Ceram. Trans. J. Vol. 90 (1991), p.48.

Google Scholar

[11] K. -H. Haussner and N. Claussen: J. Europ. Ceram. Soc. Vol. 5 (1989), p.193.

Google Scholar

[12] G.R. Anstis, P. Chantikul, BR. Lawn and DB Marshall: J. Am. Ceram. Soc. Vol. 64 (1981), p.533.

Google Scholar

[13] E. Tani, M. Yoshimura, and S. Somiya: J. Am. Ceram. Soc. Vol. 66 (1983) p.506.

Google Scholar

[14] L. Li and Z.Y. Xu and TY. Hsu: J. Mater. Sci. & Technol. Vol. 12 (1996) p.159.

Google Scholar

[15] S. Huang, L. Li, J. Vleugels, O. Van der Biest and P. Wang: J. Mater. Sci. & Technol. Vol. 20 (2004) p.75.

Google Scholar

[16] Z.X. Yuan, J. Vleugels, O. Van der Biest: Materials Letters. Vol. 46 (5) (2000) p.249.

Google Scholar